Spaces:
Sleeping
Sleeping
import random | |
import numpy as np | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from sklearn.preprocessing import LabelEncoder | |
# Initialize the model and tokenizer | |
model_name = "xlm-roberta-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) | |
# Define action space: [0 = Incorrect, 1 = Correct] | |
action_space = [0, 1] | |
# Define environment (simplified): classify text | |
text_data = [ | |
("Water freezes at 0°C.", 1), # Correct | |
("The sun rises in the west.", 0), # Incorrect | |
("Dogs can fly in the sky.", 0), # Incorrect | |
("Birds lay eggs.", 1), # Correct | |
("The Earth is flat.", 0), # Incorrect | |
] | |
# Q-learning parameters | |
alpha = 0.1 # Learning rate | |
gamma = 0.9 # Discount factor | |
epsilon = 0.1 # Exploration rate | |
n_episodes = 1000 # Number of episodes for training | |
q_table = np.zeros((len(text_data), len(action_space))) # Q-table (state x action) | |
# Reward system (simplified) | |
def get_reward(text, predicted_label): | |
correct_label = next((label for t, label in text_data if t == text), None) | |
if predicted_label == correct_label: | |
return 1 # Reward for correct classification | |
return -1 # Penalty for incorrect classification | |
# Q-learning training loop | |
for episode in range(n_episodes): | |
state = random.choice(text_data) # Random initial text input | |
state_idx = text_data.index(state) | |
# Exploration vs Exploitation | |
if random.uniform(0, 1) < epsilon: | |
action = random.choice(action_space) # Exploration: random action | |
else: | |
action = np.argmax(q_table[state_idx]) # Exploitation: choose best action based on Q-table | |
# Make a prediction based on action | |
inputs = tokenizer(state[0], return_tensors="pt") | |
with torch.no_grad(): | |
output = model(**inputs) | |
predicted_label = torch.argmax(output.logits, dim=1).item() | |
# Get reward from environment | |
reward = get_reward(state[0], predicted_label) | |
# Update Q-table using Q-learning update rule | |
next_state_idx = random.choice(range(len(text_data))) # Random next state (simplified) | |
best_next_action = np.argmax(q_table[next_state_idx]) | |
q_table[state_idx, action] = (1 - alpha) * q_table[state_idx, action] + alpha * (reward + gamma * q_table[next_state_idx, best_next_action]) | |
if episode % 100 == 0: | |
print(f"Episode {episode + 1}/{n_episodes}, Reward: {reward}") | |
# After training, the model should have learned which actions (labels) to take | |
print("Training complete.") | |