SivaMallikarjun's picture
Create app.py
38f7c66 verified
raw
history blame
825 Bytes
import gradio as gr
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load pre-trained model & tokenizer (Example: XLM-R for multilingual text classification)
model_name = "xlm-roberta-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
# Define prediction function
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
label = torch.argmax(output.logits, dim=1).item()
return "Correct" if label == 1 else "Incorrect"
# Gradio UI
gradio_app = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(label="Enter Text"),
outputs="text",
title="Multi-Language RL Model"
)
gradio_app.launch()