File size: 1,984 Bytes
81b935b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
import torch
import os

# Load Dataset
dataset = load_dataset('csv', data_files={'train': './data/raw_data.csv'}, delimiter=",")

# Load Pretrained Tokenizer and Model
model_name = "xlm-roberta-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)

# Tokenization
def preprocess_function(examples):
    return tokenizer(examples['text'], truncation=True, padding=True)

encoded_dataset = dataset.map(preprocess_function, batched=True)

# Training Arguments
training_args = TrainingArguments(
    output_dir="./checkpoints",
    num_train_epochs=3,
    per_device_train_batch_size=8,
    save_steps=100,
    save_total_limit=1,
    logging_dir="./logs",
    logging_steps=10,
    evaluation_strategy="no",
    push_to_hub=False,
    load_best_model_at_end=False
)

# Trainer Setup
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=encoded_dataset['train']
)

# Start Training
trainer.train()

# Save Final Fine-tuned Model
save_directory = "./models/fine_tuned_xlm_roberta"
os.makedirs(save_directory, exist_ok=True)
model.save_pretrained(save_directory)
tokenizer.save_pretrained(save_directory)

# Quantize Model (Make Lightweight)
def quantize_model(model_path):
    model = AutoModelForSequenceClassification.from_pretrained(model_path)
    model.to(torch.device('cpu'))
    model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
    quantized_model_path = model_path + "_quantized"
    os.makedirs(quantized_model_path, exist_ok=True)
    model.save_pretrained(quantized_model_path)
    tokenizer.save_pretrained(quantized_model_path)
    print(f"Quantized model saved to {quantized_model_path}")

quantize_model(save_directory)