File size: 9,815 Bytes
4abd740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
import duckdb
import pandas as pd
from datetime import datetime
import random

# --- MCP Registry ---
class MCP:
    def __init__(self):
        self.agents = {}
        self.services = {}  # To map service types to agent names

    def register_agent(self, name, agent, services=None):
        self.agents[name] = agent
        if services:
            for service in services:
                if service not in self.services:
                    self.services[service] = []
                self.services[service].append(name)

    def get_agent(self, name):
        return self.agents.get(name)

    def find_agents_by_service(self, service_type):
        return self.services.get(service_type, [])

mcp_registry = MCP()

# --- Data Management Agent ---
class DataManagementAgent:
    def __init__(self, db_path="market_ai_duckdb.db"):
        self.conn = duckdb.connect(db_path)
        self._create_tables()

    def _create_tables(self):
        try:
            self.conn.execute("""
            CREATE TABLE IF NOT EXISTS demand_forecasts (
                item_name VARCHAR,
                location VARCHAR,
                forecast_date VARCHAR,
                predicted_demand INTEGER
            );
            """)
        except Exception as e:
            print(f"Error creating demand_forecasts table: {e}")

        try:
            self.conn.execute("""
            CREATE TABLE IF NOT EXISTS consumer_requests (
                id INTEGER,
                consumer_name VARCHAR,
                item_name VARCHAR,
                requested_qty INTEGER,
                unit VARCHAR,
                required_date VARCHAR
            );
            """)
        except Exception as e:
            print(f"Error creating consumer_requests table: {e}")

        try:
            self.conn.execute("""
            CREATE TABLE IF NOT EXISTS farmer_stock (
                id INTEGER,
                farmer_name VARCHAR,
                item_name VARCHAR,
                available_qty INTEGER,
                unit VARCHAR,
                quality_grade VARCHAR,
                available_date VARCHAR
            );
            """)
        except Exception as e:
            print(f"Error creating farmer_stock table: {e}")
        self.conn.commit()


    def insert(self, table_name, data):
        cursor = self.conn.cursor()
        placeholders = ', '.join(['?'] * len(data))
        query = f"INSERT INTO {table_name} VALUES ({placeholders})"
        try:
            cursor.execute(query, data)
            self.conn.commit()
        except Exception as e:
            print(f"Error inserting into {table_name}: {e}")

    def fetch(self, query):
        try:
            df = self.conn.execute(query).df()
            return df
        except Exception as e:
            print(f"Error fetching data: {e}")
            return pd.DataFrame()

data_agent = DataManagementAgent()
mcp_registry.register_agent("data_agent", data_agent, services=["data_storage"])

# --- Demand Forecasting Agent (Simplified) ---
class DemandForecastingAgent:
    def __init__(self, data_agent):
        self.data_agent = data_agent

    def predict_demand(self, item_name, location, forecast_date):
        predicted_demand = random.randint(10, 100)
        self.data_agent.insert("demand_forecasts", (item_name, location, forecast_date, predicted_demand))
        return f"Predicted demand for {item_name} in {location} on {forecast_date}: {predicted_demand}"

demand_forecaster = DemandForecastingAgent(data_agent)
mcp_registry.register_agent("demand_forecaster", demand_forecaster, services=["demand_forecasting"])

# --- Vendor Agent (Illustrative) ---
class VendorAgent:
    def __init__(self, mcp_registry):
        self.mcp_registry = mcp_registry

    def get_demand_forecast(self, item_name, location, forecast_date):
        forecasting_agents = self.mcp_registry.find_agents_by_service("demand_forecasting")
        if forecasting_agents:
            forecaster_name = forecasting_agents[0]
            forecaster = self.mcp_registry.get_agent(forecaster_name)
            return forecaster.predict_demand(item_name, location, forecast_date)
        else:
            return "No demand forecasting agent available."

vendor_agent = VendorAgent(mcp_registry)
mcp_registry.register_agent("vendor_agent", vendor_agent)

# --- Consumer Agent ---
class ConsumerAgent:
    def __init__(self, data_agent):
        self.data_agent = data_agent

    def submit_request(self, consumer_name, item_name, requested_qty, unit, required_date):
        data = (int(datetime.now().timestamp()), consumer_name, item_name, requested_qty, unit, required_date)
        self.data_agent.insert("consumer_requests", data)
        return "Consumer request submitted successfully."

consumer_agent = ConsumerAgent(data_agent)
mcp_registry.register_agent("consumer_agent", consumer_agent, services=["consumer_request_submission"])

# --- Farmer Agent ---
class FarmerAgent:
    def __init__(self, data_agent):
        self.data_agent = data_agent

    def submit_stock(self, farmer_name, item_name, available_qty, unit, quality_grade, available_date):
        data = (int(datetime.now().timestamp()), farmer_name, item_name, available_qty, unit, quality_grade, available_date)
        self.data_agent.insert("farmer_stock", data)
        return "Farmer stock submitted successfully."

farmer_agent = FarmerAgent(data_agent)
mcp_registry.register_agent("farmer_agent", farmer_agent, services=["farmer_stock_submission"])

# --- Matching Agent ---
class MatchingAgent:
    def __init__(self, data_agent):
        self.data_agent = data_agent

    def view_matches(self):
        query = """
            SELECT c.consumer_name, c.item_name, c.requested_qty, c.unit AS consumer_unit, c.required_date,
                   f.farmer_name, f.available_qty, f.unit AS farmer_unit, f.quality_grade, f.available_date
            FROM consumer_requests c
            LEFT JOIN farmer_stock f ON c.item_name = f.item_name AND c.unit = f.unit
            WHERE c.required_date <= f.available_date
        """
        df = self.data_agent.fetch(query)
        return df

matching_agent = MatchingAgent(data_agent)
mcp_registry.register_agent("matching_agent", matching_agent, services=["market_matching"])

# --- Pre-Booking Agent ---
class PreBookingAgent:
    def pre_book_item(self, consumer_name, item_name):
        return f"{consumer_name} pre-booked {item_name}. Please proceed to checkout during market day."

prebooking_agent = PreBookingAgent()
mcp_registry.register_agent("prebooking_agent", prebooking_agent, services=["pre_booking"])

# --- GRADIO UI ---
def submit_consumer_ui(consumer_name, item_name, requested_qty, unit, required_date):
    agent = mcp_registry.get_agent("consumer_agent")
    return agent.submit_request(consumer_name, item_name, requested_qty, unit, required_date)

def submit_farmer_ui(farmer_name, item_name, available_qty, unit, quality_grade, available_date):
    agent = mcp_registry.get_agent("farmer_agent")
    return agent.submit_stock(farmer_name, item_name, available_qty, unit, quality_grade, available_date)

def view_market_matches_ui():
    agent = mcp_registry.get_agent("matching_agent")
    return agent.view_matches()

def pre_book_item_ui(consumer_name, item_name):
    agent = mcp_registry.get_agent("prebooking_agent")
    return agent.pre_book_item(consumer_name, item_name)

def get_demand_forecast_ui(item_name, location, forecast_date):
    vendor = mcp_registry.get_agent("vendor_agent")
    return vendor.get_demand_forecast(item_name, location, forecast_date)

with gr.Blocks() as app:
    gr.Markdown("## Agentic AI Market App with MCP")

    with gr.Tab("Consumer Request"):
        uid = gr.Textbox(label="Consumer Name")
        item = gr.Textbox(label="Item Name")
        qty = gr.Number(label="Quantity Required")
        unit = gr.Textbox(label="Unit (e.g., kg, liters)")
        req_date = gr.Textbox(label="Required Date (YYYY-MM-DD)")
        consumer_btn = gr.Button("Submit Request")
        consumer_output = gr.Textbox()
        consumer_btn.click(submit_consumer_ui, inputs=[uid, item, qty, unit, req_date], outputs=consumer_output)

    with gr.Tab("Farmer Stock"):
        fid = gr.Textbox(label="Farmer Name")
        item_stock = gr.Textbox(label="Item Name")
        qty_stock = gr.Number(label="Available Quantity")
        unit_stock = gr.Textbox(label="Unit (e.g., kg, liters)")
        quality = gr.Textbox(label="Quality Grade")
        avail_date = gr.Textbox(label="Available Date (YYYY-MM-DD)")
        farmer_btn = gr.Button("Submit Stock")
        farmer_output = gr.Textbox()
        farmer_btn.click(submit_farmer_ui, inputs=[fid, item_stock, qty_stock, unit_stock, quality, avail_date], outputs=farmer_output)

    with gr.Tab("Market Matches"):
        match_btn = gr.Button("View Matches")
        match_output = gr.Dataframe()
        match_btn.click(view_market_matches_ui, outputs=match_output)

    with gr.Tab("Pre-Booking"):
        consumer_name_prebook = gr.Textbox(label="Consumer Name")
        item_name_prebook = gr.Textbox(label="Item Name")
        prebook_btn = gr.Button("Pre-Book Item")
        prebook_output = gr.Textbox()
        prebook_btn.click(pre_book_item_ui, inputs=[consumer_name_prebook, item_name_prebook], outputs=prebook_output)

    with gr.Tab("Vendor Services"):
        item_forecast = gr.Textbox(label="Item Name")
        location_forecast = gr.Textbox(label="Location")
        date_forecast = gr.Textbox(label="Forecast Date (YYYY-MM-DD)")
        forecast_btn = gr.Button("Get Demand Forecast")
        forecast_output = gr.Textbox()
        forecast_btn.click(get_demand_forecast_ui, inputs=[item_forecast, location_forecast, date_forecast], outputs=forecast_output)

app.launch()