Spaces:
Runtime error
Runtime error
Commit
·
a06bc99
1
Parent(s):
64bfafd
Update app.py
Browse files
app.py
CHANGED
@@ -50,6 +50,7 @@ st.markdown(
|
|
50 |
unsafe_allow_html=True,
|
51 |
)
|
52 |
|
|
|
53 |
device = torch.device("cpu")
|
54 |
|
55 |
testing_df = pd.read_csv("testing_df.csv")
|
@@ -57,12 +58,6 @@ model = CLIPModel().to(device)
|
|
57 |
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
|
58 |
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)
|
59 |
|
60 |
-
# Initialize the session state
|
61 |
-
if 'user_input' not in st.session_state:
|
62 |
-
st.session_state.user_input = ''
|
63 |
-
if 'chat_history' not in st.session_state:
|
64 |
-
st.session_state.chat_history = []
|
65 |
-
|
66 |
def show_predicted_caption(image):
|
67 |
matches = predict_caption(
|
68 |
image, model, text_embeddings, testing_df["caption"]
|
@@ -104,7 +99,6 @@ def download_link(content, filename, link_text):
|
|
104 |
href = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">{link_text}</a>'
|
105 |
return href
|
106 |
|
107 |
-
|
108 |
st.title("RadiXGPT: An Evolution of machine doctors towards Radiology")
|
109 |
|
110 |
# Collect user's personal information
|
@@ -140,28 +134,26 @@ if uploaded_file is not None:
|
|
140 |
st.write(radiology_report_with_personal_info)
|
141 |
st.markdown(download_link(save_as_docx(radiology_report_with_personal_info, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)
|
142 |
|
143 |
-
#
|
144 |
st.header("1-to-1 Consultation")
|
145 |
st.write("Ask any questions you have about the radiology report:")
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
153 |
st.write("Bot: You're welcome! If you have any more questions, feel free to ask.")
|
154 |
-
st.session_state.user_input = ''
|
155 |
-
st.session_state.chat_history = []
|
156 |
else:
|
157 |
# Generate the answer to the user's question
|
158 |
-
prompt = f"Answer to the user's question based on the generated radiology report: {
|
159 |
-
for history_item in
|
160 |
prompt += f"\nUser: {history_item['user']}"
|
161 |
if 'bot' in history_item:
|
162 |
prompt += f"\nBot: {history_item['bot']}"
|
163 |
-
|
164 |
answer = chatbot_response(prompt)
|
165 |
-
|
166 |
-
st.write(f"Bot: {answer}")
|
167 |
-
st.session_state.user_input = ''
|
|
|
50 |
unsafe_allow_html=True,
|
51 |
)
|
52 |
|
53 |
+
|
54 |
device = torch.device("cpu")
|
55 |
|
56 |
testing_df = pd.read_csv("testing_df.csv")
|
|
|
58 |
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
|
59 |
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def show_predicted_caption(image):
|
62 |
matches = predict_caption(
|
63 |
image, model, text_embeddings, testing_df["caption"]
|
|
|
99 |
href = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">{link_text}</a>'
|
100 |
return href
|
101 |
|
|
|
102 |
st.title("RadiXGPT: An Evolution of machine doctors towards Radiology")
|
103 |
|
104 |
# Collect user's personal information
|
|
|
134 |
st.write(radiology_report_with_personal_info)
|
135 |
st.markdown(download_link(save_as_docx(radiology_report_with_personal_info, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)
|
136 |
|
137 |
+
# Add the chatbot functionality
|
138 |
st.header("1-to-1 Consultation")
|
139 |
st.write("Ask any questions you have about the radiology report:")
|
140 |
+
|
141 |
+
user_input = st.text_input("Enter your question:")
|
142 |
+
chat_history = []
|
143 |
+
|
144 |
+
if user_input:
|
145 |
+
chat_history.append({"user": user_input})
|
146 |
+
|
147 |
+
if user_input.lower() == "thank you":
|
148 |
st.write("Bot: You're welcome! If you have any more questions, feel free to ask.")
|
|
|
|
|
149 |
else:
|
150 |
# Generate the answer to the user's question
|
151 |
+
prompt = f"Answer to the user's question based on the generated radiology report: {user_input}"
|
152 |
+
for history_item in chat_history:
|
153 |
prompt += f"\nUser: {history_item['user']}"
|
154 |
if 'bot' in history_item:
|
155 |
prompt += f"\nBot: {history_item['bot']}"
|
156 |
+
|
157 |
answer = chatbot_response(prompt)
|
158 |
+
chat_history[-1]["bot"] = answer
|
159 |
+
st.write(f"Bot: {answer}")
|
|