RadiXGPT_ / app.py
Singularity666's picture
Update app.py
36b2997
raw
history blame
3.74 kB
import streamlit as st
import pickle
import pandas as pd
import torch
from PIL import Image
import numpy as np
from main import predict_caption, CLIPModel, get_text_embeddings
import openai
import base64
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import docx
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from io import BytesIO
# Set up OpenAI API
openai.api_key = "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"
# Custom CSS for the page
st.markdown(
"""
<style>
body {
background-color: transparent;
}
.container {
display: flex;
justify-content: center;
align-items: center;
background-color: rgba(255, 255, 255, 0.7);
border-radius: 15px;
padding: 20px;
}
</style>
""",
unsafe_allow_html=True,
)
device = torch.device("cpu")
testing_df = pd.read_csv("testing_df.csv")
model = CLIPModel().to(device)
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)
def show_predicted_caption(image):
matches = predict_caption(
image, model, text_embeddings, testing_df["caption"]
)[0]
return matches
def generate_radiology_report(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=800,
n=1,
stop=None,
temperature=0.9,
)
return response.choices[0].text.strip()
def chatbot_response(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=500,
n=1,
stop=None,
temperature=0.8,
)
return response.choices[0].text.strip()
def create_pdf(caption, buffer):
c = canvas.Canvas(buffer, pagesize=letter)
c.drawString(50, 750, caption)
c.save()
buffer.seek(0)
return buffer
st.title("RadiXGPT: An Evolution of machine doctors towrads Radiology")
st.write("Upload Scan to get Radiological Report:")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("")
if st.button("Generate Caption"):
with st.spinner("Generating caption..."):
image_np = np.array(image)
caption = show_predicted_caption(image_np)
st.success(f"Caption: {caption}")
# Add the OpenAI API call here and generate the radiology report
radiology_report = f"Write Complete Radiology Report for this: {caption}"
container = st.beta_container()
with container:
st.header("Radiology Report")
st.write(radiology_report)
st.markdown(download_link(save_as_docx(radiology_report, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)
# Add the chatbot functionality
st.header("1-to-1 Consultation")
st.write("Ask any questions you have about the radiology report:")
user_input = st.text_input("Enter your question:")
if user_input:
if user_input.lower() == "thank you":
st.write("You're welcome! If you have any more questions, feel free to ask.")
else:
# Add the OpenAI API call here and generate the answer to the user's question
answer = f"Answer to the user's question based on the generated radiology report: {user_input}"
st.write(answer)