File size: 4,920 Bytes
f9f1b17
edd8d6d
 
 
f9f1b17
 
edd8d6d
 
 
 
 
 
377051a
edd8d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fbc488
 
 
 
 
b84092b
edd8d6d
 
b84092b
377051a
 
edd8d6d
 
 
 
 
 
 
 
 
 
377051a
 
 
 
 
edd8d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe6abe
 
 
baed763
f9f1b17
 
 
 
 
 
36b2997
 
f9f1b17
b84092b
baed763
f9f1b17
 
baed763
ad61148
cd22e2c
baed763
 
cd22e2c
f2afde8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import streamlit as st
import pickle
import pandas as pd
import torch
from PIL import Image
import numpy as np
from main import predict_caption, CLIPModel, get_text_embeddings
import openai
import base64
from docx import Document
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from io import BytesIO
import re

openai.api_key = "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"

st.markdown(
    """
<style>
    body {
        background-color: transparent;
    }
    .container {
        display: flex;
        justify-content: center;
        align-items: center;
        background-color: rgba(255, 255, 255, 0.7);
        border-radius: 15px;
        padding: 20px;
    }
    .stApp {
        background-color: transparent;
    }
    .stText, .stMarkdown, .stTextInput>label, .stButton>button>span {
        color: #1c1c1c !important; /* Set the dark text color for text elements */
    }
    .stButton>button>span {
        color: initial !important; /* Reset the text color for the 'Generate Caption' button */
    }
    .stMarkdown h1, .stMarkdown h2 {
        color: #ff6b81 !important; /* Set the text color of h1 and h2 elements to soft red-pink */
        font-weight: bold; /* Set the font weight to bold */
        border: 2px solid #ff6b81; /* Add a bold border around the headers */
        padding: 10px; /* Add padding to the headers */
        border-radius: 5px; /* Add border-radius to the headers */
    }
</style>
""",
    unsafe_allow_html=True,
)

device = torch.device("cpu")

testing_df = pd.read_csv("testing_df.csv")
model = CLIPModel().to(device)
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)

def download_link(content, filename, link_text):
    b64 = base64.b64encode(content).decode()
    href = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">{link_text}</a>'
    return href

def show_predicted_caption(image, top_k=1):
    matches = predict_caption(
        image, model, text_embeddings, testing_df["caption"]
    )[:top_k]
    cleaned_matches = [re.sub(r'\s\(ROCO_\d+\)', '', match) for match in matches]  # Add this line to clean the matches
    return cleaned_matches  # Return the cleaned_matches instead of matches

def generate_radiology_report(prompt):
    response = openai.Completion.create(
        engine="text-davinci-003",
        prompt=prompt,
        max_tokens=800,
        n=1,
        stop=None,
        temperature=1,
    )
    report = response.choices[0].text.strip()
    # Remove reference string from the report
    report = re.sub(r'\(ROCO_\d+\)', '', report).strip()
    return report


def save_as_docx(text, filename):
    document = Document()
    document.add_paragraph(text)
    with BytesIO() as output:
        document.save(output)
        output.seek(0)
        return output.getvalue()

st.title("RadiXGPT: An Evolution of machine doctors towards Radiology")

# Collect user's personal information
st.subheader("Personal Information")
first_name = st.text_input("First Name")
last_name = st.text_input("Last Name")
age = st.number_input("Age", min_value=0, max_value=120, value=25, step=1)
gender = st.selectbox("Gender", ["Male", "Female", "Other"])

st.write("Upload Scan to get Radiological Report:")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Image", use_column_width=True)
    st.write("")

    if st.button("Generate Caption"):
        with st.spinner("Generating caption..."):
            image_np = np.array(image)
            caption = show_predicted_caption(image_np)[0]

            st.success(f"Caption: {caption}")

            # Generate the radiology report
            radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this: {caption}")

            # Add personal information to the radiology report
            radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{radiology_report}"

            st.header("Radiology Report")
            st.write(radiology_report_with_personal_info)
            st.markdown(download_link(save_as_docx(radiology_report_with_personal_info, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)

            # Feedback buttons
            st.header("Thanks for your feedback!")
            feedback_options = ["Better", "Satisfied", "Worse"]
            selected_feedback = st.radio("Please provide feedback on the generated report:", feedback_options)

            if st.button("Submit Feedback"):
                st.success("Thanks for providing feedback!")
                # Implement your feedback handling logic here based on the `selected_feedback` value