Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
import gradio as g | |
# Загружаем модель rut5-base с медленным токенизатором | |
model_name = "cointegrated/rut5-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Функция генерации ответа | |
def generate_response(prompt): | |
input_ids = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True) | |
with torch.no_grad(): | |
output_ids = model.generate( | |
input_ids, | |
max_length=200, | |
num_beams=5, | |
do_sample=True, | |
top_p=0.9, | |
temperature=0.8, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return response | |
# Gradio-интерфейс | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=4, label="Введите ваш запрос"), | |
outputs=gr.Textbox(label="Ответ модели"), | |
title="Интерфейс ChatGPT", | |
description="Пример взаимодействия с API OpenAI через Hugging Face Space" | |
) | |
iface.launch() | |