Spaces:
Runtime error
Runtime error
File size: 1,092 Bytes
a7e2438 11dd5a2 deed210 14e67e3 11dd5a2 9865594 11dd5a2 a7e2438 2083406 11dd5a2 b5e2b48 9865594 11dd5a2 9865594 11dd5a2 b5e2b48 9865594 b5e2b48 9865594 11dd5a2 a121d15 2083406 9865594 d1db060 a121d15 a7e2438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
model_name = "cointegrated/rut5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def generate_response(prompt):
instruction = f"Ответь кратко: {prompt.strip()}"
input_ids = tokenizer.encode(instruction, return_tensors="pt", max_length=512, truncation=True)
output = model.generate(
input_ids,
max_new_tokens=80,
do_sample=True,
top_p=0.9,
temperature=0.7,
repetition_penalty=1.2,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response.strip()
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="Введите ваш вопрос"),
outputs=gr.Textbox(label="Ответ модели"),
title="Интерфейс ChatGPT",
description="Пример взаимодействия с API OpenAI через Hugging Face Space"
)
iface.launch()
|