import spaces import os import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import snapshot_download import torch from accelerate import Accelerator # Initialize Accelerator for efficient multi-GPU/Zero optimization accelerator = Accelerator() # Load the model and tokenizer model_path = snapshot_download( repo_id=os.environ.get("REPO_ID", "SimpleBerry/LLaMA-O1-Supervised-1129") ) tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto" ).eval() DESCRIPTION = ''' # SimpleBerry/LLaMA-O1-Supervised-1129 | Optimized for Streaming and Hugging Face Zero Space. This model is experimental and focused on advancing AI reasoning capabilities. **To start a new chat**, click "clear" and begin a fresh dialogue. ''' LICENSE = """ --- MIT License --- """ template = "-10{content}\n01" def llama_o1_template(data): text = template.format(content=data) return text @spaces.GPU def gen_one_token(inputs,temperature,top_p): output = model.generate( **inputs, max_new_tokens=1, temperature=temperature, top_p=top_p, do_sample=True, use_cache=True, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=False ) return output def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95): input_text = llama_o1_template(message) for i in range(max_tokens): inputs = tokenizer(input_text, return_tensors="pt").to(accelerator.device) output = gen_one_token(inputs,temperature,top_p) # Return text with special tokens included generated_text = tokenizer.decode(output, skip_special_tokens=False) input_text += generated_text yield generated_text with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) chatbot = gr.ChatInterface( generate_text, title="SimpleBerry/LLaMA-O1-Supervised-1129 | Optimized Demo", description="Adjust settings below as needed.", examples=[ ["How many r's are in the word strawberry?"], ['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'], ['Find the least odd prime factor of $2019^8+1$.'], ], cache_examples=False, fill_height=True ) with gr.Accordion("Adjust Parameters", open=False): max_tokens_slider = gr.Slider(minimum=128, maximum=2048, value=512, step=1, label="Max Tokens") temperature_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.9, step=0.1, label="Temperature") top_p_slider = gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)") gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()