|
import os |
|
from typing import Generator, Optional |
|
import gradio as gr |
|
from llama_cpp import Llama, LlamaGrammar |
|
from huggingface_hub import hf_hub_download |
|
|
|
DESCRIPTION = ''' |
|
# SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free. |
|
SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry. |
|
Focused on advancing AI reasoning capabilities. |
|
|
|
## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks! |
|
|
|
**To start a new chat**, click "clear" and start a new dialog. |
|
''' |
|
|
|
LICENSE = """ |
|
--- MIT License --- |
|
""" |
|
|
|
template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>" |
|
|
|
class OptimizedLLMInterface: |
|
_model_instance = None |
|
|
|
def __init__( |
|
self, |
|
model_repo_id: str = "SimpleBerry/LLaMA-O1-Supervised-1129-Q2_K-GGUF", |
|
model_filename: str = "LLaMA-O1-Supervised-1129-q2_k.gguf", |
|
): |
|
if OptimizedLLMInterface._model_instance is None: |
|
model_path = hf_hub_download(repo_id=model_repo_id, filename=model_filename) |
|
OptimizedLLMInterface._model_instance = Llama( |
|
model_path=model_path, |
|
n_ctx=256, |
|
n_threads=4, |
|
n_batch=1, |
|
verbose=False, |
|
seed=-1, |
|
logits_all=False, |
|
embedding=False, |
|
tensor_split=None, |
|
rope_freq_base=10000, |
|
rope_freq_scale=1.0, |
|
main_gpu=0, |
|
) |
|
self.model = OptimizedLLMInterface._model_instance |
|
|
|
|
|
template_parts = template.split("{content}") |
|
self._prefix_tokens = self.model.tokenize(template_parts[0].encode()) |
|
self._suffix_tokens = self.model.tokenize(template_parts[1].encode()) |
|
|
|
def generate_response( |
|
self, |
|
message: str, |
|
history: Optional[list] = None, |
|
max_tokens: int = 128, |
|
temperature: float = 0.7, |
|
top_p: float = 0.95, |
|
) -> Generator[str, None, None]: |
|
try: |
|
|
|
message_tokens = self.model.tokenize(message.encode()) |
|
input_tokens = [] |
|
input_tokens.extend(self._prefix_tokens) |
|
input_tokens.extend(message_tokens) |
|
input_tokens.extend(self._suffix_tokens) |
|
|
|
output = "" |
|
batch = [] |
|
batch_size = 4 |
|
|
|
for token in self.model.generate( |
|
input_tokens, |
|
top_p=top_p, |
|
temp=temperature, |
|
top_k=1, |
|
repeat_penalty=1.0, |
|
mirostat_mode=0, |
|
min_p=0.05, |
|
typical_p=1.0, |
|
presence_penalty=0, |
|
frequency_penalty=0, |
|
): |
|
batch.append(token) |
|
if len(batch) >= batch_size: |
|
text = self.model.detokenize(batch).decode('utf-8', errors='ignore') |
|
output += text |
|
yield output |
|
batch = [] |
|
|
|
if batch: |
|
text = self.model.detokenize(batch).decode('utf-8', errors='ignore') |
|
output += text |
|
yield output |
|
|
|
except Exception as e: |
|
yield f"Error: {str(e)}" |
|
|
|
def create_demo(llm_interface: OptimizedLLMInterface) -> gr.Blocks: |
|
with gr.Blocks() as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
chatbot = gr.ChatInterface( |
|
llm_interface.generate_response, |
|
title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo", |
|
description="Edit Settings below if needed.", |
|
examples=[ |
|
["How many r's are in the word strawberry?"], |
|
['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'], |
|
['Find the least odd prime factor of $2019^8+1$.'], |
|
], |
|
cache_examples=False, |
|
fill_height=True |
|
) |
|
|
|
with gr.Accordion("Adjust Parameters", open=False): |
|
gr.Slider(minimum=64, maximum=512, value=128, step=64, label="Max Tokens") |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") |
|
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p") |
|
|
|
gr.Markdown(LICENSE) |
|
|
|
return demo |
|
|
|
def main(): |
|
llm = OptimizedLLMInterface() |
|
demo = create_demo(llm) |
|
|
|
demo.launch( |
|
share=False, |
|
quiet=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
main() |