File size: 4,715 Bytes
fc46f2c 4d7e82f fc46f2c ee950e1 fc46f2c 4d7e82f b377b1e 4d7e82f b377b1e 4d7e82f b377b1e 4d7e82f b377b1e 4d7e82f b377b1e 4d7e82f f5f11cd 43b7c77 4d7e82f 43b7c77 f5f11cd 43b7c77 f5f11cd 43b7c77 b377b1e 4d7e82f f5f11cd 43b7c77 4d7e82f 43b7c77 f5f11cd 4d7e82f f5f11cd 43b7c77 f5f11cd b377b1e 4d7e82f b377b1e 4d7e82f f5f11cd 4d7e82f b377b1e 4d7e82f 43b7c77 b377b1e 4d7e82f ee950e1 4d7e82f 43b7c77 4d7e82f f5f11cd 43b7c77 f5f11cd 43b7c77 ee950e1 4d7e82f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import os
from typing import Generator, Optional
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
DESCRIPTION = '''
# SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free.
SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry.
Focused on advancing AI reasoning capabilities.
## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks!
**To start a new chat**, click "clear" and start a new dialog.
'''
LICENSE = """
--- MIT License ---
"""
template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>"
class OptimizedLLMInterface:
_model_instance = None
def __init__(
self,
model_repo_id: str = "Lyte/LLaMA-O1-Supervised-1129-Q4_K_M-GGUF",
model_filename: str = "llama-o1-supervised-1129-q4_k_m.gguf",
):
if OptimizedLLMInterface._model_instance is None:
OptimizedLLMInterface._model_instance = Llama(
model_path=hf_hub_download(repo_id=model_repo_id, filename=model_filename),
n_ctx=512,
n_threads=4,
n_batch=32,
logits_all=False,
embedding=False,
seed=-1,
verbose=False,
offload_kqv=True,
)
self.model = OptimizedLLMInterface._model_instance
template_parts = template.split("{content}")
self._prefix_tokens = self.model.tokenize(template_parts[0].encode())
self._suffix_tokens = self.model.tokenize(template_parts[1].encode())
def generate_response(
self,
message: str,
history: Optional[list] = None,
max_tokens: int = 256,
temperature: float = 0.7,
top_p: float = 0.95,
) -> Generator[str, None, None]:
message_tokens = self.model.tokenize(message.encode())
input_tokens = []
input_tokens.extend(self._prefix_tokens)
input_tokens.extend(message_tokens)
input_tokens.extend(self._suffix_tokens)
output = ""
batch = []
batch_size = 8
try:
for token in self.model.generate(
input_tokens,
top_p=top_p,
temp=temperature,
top_k=1,
repeat_penalty=1.0,
max_tokens=max_tokens, # Added max_tokens limit
):
batch.append(token)
if len(batch) >= batch_size:
text = self.model.detokenize(batch).decode('utf-8', errors='ignore')
output += text
yield output
batch = []
if batch:
text = self.model.detokenize(batch).decode('utf-8', errors='ignore')
output += text
yield output
except Exception as e:
yield f"Error: {str(e)}"
def create_demo(llm_interface: OptimizedLLMInterface) -> gr.Blocks:
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.ChatInterface(
llm_interface.generate_response,
title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo",
description="Edit Settings below if needed.",
examples=[
["How many r's are in the word strawberry?"],
['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'],
['Find the least odd prime factor of $2019^8+1$.'],
],
cache_examples=False, # Disabled example caching to fix the error
fill_height=True
)
with gr.Accordion("Adjust Parameters", open=False):
gr.Slider(minimum=128, maximum=2048, value=256, step=128, label="Max Tokens")
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p")
gr.Markdown(LICENSE)
return demo
def main():
llm = OptimizedLLMInterface()
demo = create_demo(llm)
# Simplified launch configuration
demo.launch(
quiet=True
)
if __name__ == "__main__":
main() |