File size: 4,715 Bytes
fc46f2c
4d7e82f
fc46f2c
ee950e1
 
fc46f2c
4d7e82f
 
 
 
b377b1e
4d7e82f
b377b1e
4d7e82f
 
b377b1e
4d7e82f
 
 
b377b1e
4d7e82f
b377b1e
4d7e82f
f5f11cd
43b7c77
4d7e82f
 
 
 
 
43b7c77
 
 
f5f11cd
 
 
43b7c77
 
f5f11cd
 
43b7c77
 
 
 
 
 
 
b377b1e
4d7e82f
 
 
 
f5f11cd
43b7c77
4d7e82f
 
43b7c77
 
 
 
 
 
 
 
f5f11cd
4d7e82f
f5f11cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43b7c77
 
 
f5f11cd
 
 
b377b1e
4d7e82f
 
 
b377b1e
4d7e82f
 
 
 
 
 
 
 
 
f5f11cd
4d7e82f
 
b377b1e
4d7e82f
43b7c77
 
 
b377b1e
4d7e82f
 
 
ee950e1
4d7e82f
43b7c77
4d7e82f
f5f11cd
 
43b7c77
f5f11cd
43b7c77
ee950e1
4d7e82f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
from typing import Generator, Optional
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download

DESCRIPTION = '''
# SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free.
SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry.  
Focused on advancing AI reasoning capabilities.  

## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks!

**To start a new chat**, click "clear" and start a new dialog.
'''

LICENSE = """
--- MIT License ---
"""

template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>"

class OptimizedLLMInterface:
    _model_instance = None

    def __init__(
        self,
        model_repo_id: str = "Lyte/LLaMA-O1-Supervised-1129-Q4_K_M-GGUF",
        model_filename: str = "llama-o1-supervised-1129-q4_k_m.gguf",
    ):
        if OptimizedLLMInterface._model_instance is None:
            OptimizedLLMInterface._model_instance = Llama(
                model_path=hf_hub_download(repo_id=model_repo_id, filename=model_filename),
                n_ctx=512,
                n_threads=4,
                n_batch=32,
                logits_all=False,
                embedding=False,
                seed=-1,
                verbose=False,
                offload_kqv=True,
            )
        self.model = OptimizedLLMInterface._model_instance
        
        template_parts = template.split("{content}")
        self._prefix_tokens = self.model.tokenize(template_parts[0].encode())
        self._suffix_tokens = self.model.tokenize(template_parts[1].encode())

    def generate_response(
        self,
        message: str,
        history: Optional[list] = None,
        max_tokens: int = 256,
        temperature: float = 0.7,
        top_p: float = 0.95,
    ) -> Generator[str, None, None]:
        message_tokens = self.model.tokenize(message.encode())
        input_tokens = []
        input_tokens.extend(self._prefix_tokens)
        input_tokens.extend(message_tokens)
        input_tokens.extend(self._suffix_tokens)
        
        output = ""
        batch = []
        batch_size = 8
        
        try:
            for token in self.model.generate(
                input_tokens,
                top_p=top_p,
                temp=temperature,
                top_k=1,
                repeat_penalty=1.0,
                max_tokens=max_tokens,  # Added max_tokens limit
            ):
                batch.append(token)
                if len(batch) >= batch_size:
                    text = self.model.detokenize(batch).decode('utf-8', errors='ignore')
                    output += text
                    yield output
                    batch = []
            
            if batch:
                text = self.model.detokenize(batch).decode('utf-8', errors='ignore')
                output += text
                yield output
                
        except Exception as e:
            yield f"Error: {str(e)}"

def create_demo(llm_interface: OptimizedLLMInterface) -> gr.Blocks:
    with gr.Blocks() as demo:
        gr.Markdown(DESCRIPTION)

        chatbot = gr.ChatInterface(
            llm_interface.generate_response,
            title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo",
            description="Edit Settings below if needed.",
            examples=[
                ["How many r's are in the word strawberry?"],
                ['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'],
                ['Find the least odd prime factor of $2019^8+1$.'],
            ],
            cache_examples=False,  # Disabled example caching to fix the error
            fill_height=True
        )

        with gr.Accordion("Adjust Parameters", open=False):
            gr.Slider(minimum=128, maximum=2048, value=256, step=128, label="Max Tokens")
            gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
            gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p")

        gr.Markdown(LICENSE)
    
    return demo

def main():
    llm = OptimizedLLMInterface()
    demo = create_demo(llm)
    
    # Simplified launch configuration
    demo.launch(
        quiet=True
    )

if __name__ == "__main__":
    main()