Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import numpy as np | |
import torch | |
from fairseq.data.audio.speech_to_text_dataset import S2TDataConfig | |
class SpeechGenerator(object): | |
def __init__(self, model, vocoder, data_cfg: S2TDataConfig): | |
self.model = model | |
self.vocoder = vocoder | |
stats_npz_path = data_cfg.global_cmvn_stats_npz | |
self.gcmvn_stats = None | |
if stats_npz_path is not None: | |
self.gcmvn_stats = np.load(stats_npz_path) | |
def gcmvn_denormalize(self, x): | |
# x: B x T x C | |
if self.gcmvn_stats is None: | |
return x | |
mean = torch.from_numpy(self.gcmvn_stats["mean"]).to(x) | |
std = torch.from_numpy(self.gcmvn_stats["std"]).to(x) | |
assert len(x.shape) == 3 and mean.shape[0] == std.shape[0] == x.shape[2] | |
x = x * std.view(1, 1, -1).expand_as(x) | |
return x + mean.view(1, 1, -1).expand_as(x) | |
def get_waveform(self, feat): | |
# T x C -> T | |
return None if self.vocoder is None else self.vocoder(feat).squeeze(0) | |
class AutoRegressiveSpeechGenerator(SpeechGenerator): | |
def __init__( | |
self, | |
model, | |
vocoder, | |
data_cfg, | |
max_iter: int = 6000, | |
eos_prob_threshold: float = 0.5, | |
): | |
super().__init__(model, vocoder, data_cfg) | |
self.max_iter = max_iter | |
self.eos_prob_threshold = eos_prob_threshold | |
def generate(self, model, sample, has_targ=False, **kwargs): | |
model.eval() | |
src_tokens = sample["net_input"]["src_tokens"] | |
src_lengths = sample["net_input"]["src_lengths"] | |
bsz, src_len = src_tokens.size()[:2] | |
n_frames_per_step = model.decoder.n_frames_per_step | |
out_dim = model.decoder.out_dim | |
raw_dim = out_dim // n_frames_per_step | |
# initialize | |
encoder_out = model.forward_encoder( | |
src_tokens, src_lengths, speaker=sample["speaker"] | |
) | |
incremental_state = {} | |
feat, attn, eos_prob = [], [], [] | |
finished = src_tokens.new_zeros((bsz,)).bool() | |
out_lens = src_lengths.new_zeros((bsz,)).long().fill_(self.max_iter) | |
prev_feat_out = encoder_out["encoder_out"][0].new_zeros(bsz, 1, out_dim) | |
for step in range(self.max_iter): | |
cur_out_lens = out_lens.clone() | |
cur_out_lens.masked_fill_(cur_out_lens.eq(self.max_iter), step + 1) | |
_, cur_eos_out, cur_extra = model.forward_decoder( | |
prev_feat_out, | |
encoder_out=encoder_out, | |
incremental_state=incremental_state, | |
target_lengths=cur_out_lens, | |
speaker=sample["speaker"], | |
**kwargs, | |
) | |
cur_eos_prob = torch.sigmoid(cur_eos_out).squeeze(2) | |
feat.append(cur_extra["feature_out"]) | |
attn.append(cur_extra["attn"]) | |
eos_prob.append(cur_eos_prob) | |
cur_finished = cur_eos_prob.squeeze(1) > self.eos_prob_threshold | |
out_lens.masked_fill_((~finished) & cur_finished, step + 1) | |
finished = finished | cur_finished | |
if finished.sum().item() == bsz: | |
break | |
prev_feat_out = cur_extra["feature_out"] | |
feat = torch.cat(feat, dim=1) | |
feat = model.decoder.postnet(feat) + feat | |
eos_prob = torch.cat(eos_prob, dim=1) | |
attn = torch.cat(attn, dim=2) | |
alignment = attn.max(dim=1)[1] | |
feat = feat.reshape(bsz, -1, raw_dim) | |
feat = self.gcmvn_denormalize(feat) | |
eos_prob = eos_prob.repeat_interleave(n_frames_per_step, dim=1) | |
attn = attn.repeat_interleave(n_frames_per_step, dim=2) | |
alignment = alignment.repeat_interleave(n_frames_per_step, dim=1) | |
out_lens = out_lens * n_frames_per_step | |
finalized = [ | |
{ | |
"feature": feat[b, :out_len], | |
"eos_prob": eos_prob[b, :out_len], | |
"attn": attn[b, :, :out_len], | |
"alignment": alignment[b, :out_len], | |
"waveform": self.get_waveform(feat[b, :out_len]), | |
} | |
for b, out_len in zip(range(bsz), out_lens) | |
] | |
if has_targ: | |
assert sample["target"].size(-1) == out_dim | |
tgt_feats = sample["target"].view(bsz, -1, raw_dim) | |
tgt_feats = self.gcmvn_denormalize(tgt_feats) | |
tgt_lens = sample["target_lengths"] * n_frames_per_step | |
for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)): | |
finalized[b]["targ_feature"] = f[:l] | |
finalized[b]["targ_waveform"] = self.get_waveform(f[:l]) | |
return finalized | |
class MultiDecoderSpeechGenerator(SpeechGenerator): | |
def __init__( | |
self, | |
models, | |
args, | |
vocoder, | |
data_cfg, | |
tgt_dict_mt, | |
max_iter: int = 6000, | |
eos_prob_threshold: float = 0.5, | |
eos_mt=None, | |
symbols_to_strip_from_output=None, | |
): | |
super().__init__(models[0], vocoder, data_cfg) | |
self.max_iter = max_iter | |
self.eos_prob_threshold = eos_prob_threshold | |
self.tgt_dict_mt = tgt_dict_mt | |
self.eos_mt = eos_mt | |
from examples.speech_to_speech.unity.sequence_generator import SequenceGenerator | |
from fairseq import search | |
self.text_generator = SequenceGenerator( | |
models, | |
tgt_dict_mt, | |
beam_size=max(1, getattr(args, "beam", 5)), | |
max_len_a=getattr(args, "max_len_a", 0), | |
max_len_b=getattr(args, "max_len_b", 200), | |
min_len=getattr(args, "min_len", 1), | |
normalize_scores=(not getattr(args, "unnormalized", False)), | |
len_penalty=getattr(args, "lenpen", 1), | |
unk_penalty=getattr(args, "unkpen", 0), | |
temperature=getattr(args, "temperature", 1.0), | |
match_source_len=getattr(args, "match_source_len", False), | |
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), | |
search_strategy=search.BeamSearch(tgt_dict_mt), | |
eos=eos_mt, | |
symbols_to_strip_from_output=symbols_to_strip_from_output, | |
) | |
def generate(self, model, sample, has_targ=False, **kwargs): | |
model.eval() | |
src_tokens = sample["net_input"]["src_tokens"] | |
src_lengths = sample["net_input"]["src_lengths"] | |
bsz, src_len = src_tokens.size()[:2] | |
n_frames_per_step = model.decoder.n_frames_per_step | |
out_dim = model.decoder.out_dim | |
raw_dim = out_dim // n_frames_per_step | |
# initialize | |
encoder_out = model.forward_encoder( | |
src_tokens, src_lengths, speaker=sample["speaker"] | |
) | |
prefix_tokens = None | |
constraints = None | |
bos_token = None | |
mt_decoder = getattr(model, f"{model.mt_task_name}_decoder") | |
# 1. MT decoder | |
finalized_mt = self.text_generator.generate_decoder( | |
[encoder_out], | |
src_tokens, | |
src_lengths, | |
sample, | |
prefix_tokens, | |
constraints, | |
bos_token, | |
aux_task_name=model.mt_task_name, | |
) | |
# extract decoder output corresponding to the best hypothesis | |
max_tgt_len = max([len(hypo[0]["tokens"]) for hypo in finalized_mt]) | |
prev_output_tokens_mt = ( | |
src_tokens.new_zeros(src_tokens.shape[0], max_tgt_len) | |
.fill_(mt_decoder.padding_idx) | |
.int() | |
) # B x T | |
for i, hypo in enumerate(finalized_mt): | |
i_beam = 0 | |
tmp = hypo[i_beam]["tokens"].int() # hyp + eos | |
prev_output_tokens_mt[i, 0] = self.text_generator.eos | |
if tmp[-1] == self.text_generator.eos: | |
tmp = tmp[:-1] | |
prev_output_tokens_mt[i, 1 : len(tmp) + 1] = tmp | |
text = "".join([self.tgt_dict_mt[c] for c in tmp]) | |
text = text.replace("_", " ") | |
text = text.replace("▁", " ") | |
text = text.replace("<unk>", " ") | |
text = text.replace("<s>", "") | |
text = text.replace("</s>", "") | |
if len(text) > 0 and text[0] == " ": | |
text = text[1:] | |
sample_id = sample["id"].tolist()[i] | |
print("{} (None-{})".format(text, sample_id)) | |
mt_decoder_out = mt_decoder( | |
prev_output_tokens_mt, | |
encoder_out=encoder_out, | |
features_only=True, | |
) | |
x = mt_decoder_out[0].transpose(0, 1) | |
mt_decoder_padding_mask = None | |
if prev_output_tokens_mt.eq(mt_decoder.padding_idx).any(): | |
mt_decoder_padding_mask = prev_output_tokens_mt.eq(mt_decoder.padding_idx) | |
# 2. TTS encoder | |
if getattr(model, "synthesizer_encoder", None) is not None: | |
synthesizer_encoder_out = model.synthesizer_encoder( | |
x, | |
mt_decoder_padding_mask, | |
) | |
else: | |
synthesizer_encoder_out = { | |
"encoder_out": [x], # T x B x C | |
"encoder_padding_mask": [mt_decoder_padding_mask] | |
if mt_decoder_padding_mask is not None | |
else [], # B x T | |
"encoder_embedding": [], | |
"encoder_states": [], | |
"src_tokens": [], | |
"src_lengths": [], | |
} | |
# 3. TTS decoder | |
incremental_state = {} | |
feat, attn, eos_prob = [], [], [] | |
finished = src_tokens.new_zeros((bsz,)).bool() | |
out_lens = src_lengths.new_zeros((bsz,)).long().fill_(self.max_iter) | |
prev_feat_out = encoder_out["encoder_out"][0].new_zeros(bsz, 1, out_dim) | |
for step in range(self.max_iter): | |
cur_out_lens = out_lens.clone() | |
cur_out_lens.masked_fill_(cur_out_lens.eq(self.max_iter), step + 1) | |
_, cur_eos_out, cur_extra = model.forward_decoder( | |
prev_feat_out, | |
encoder_out=synthesizer_encoder_out, | |
incremental_state=incremental_state, | |
target_lengths=cur_out_lens, | |
speaker=sample["speaker"], | |
**kwargs, | |
) | |
cur_eos_prob = torch.sigmoid(cur_eos_out).squeeze(2) | |
feat.append(cur_extra["feature_out"]) | |
attn.append(cur_extra["attn"]) | |
eos_prob.append(cur_eos_prob) | |
cur_finished = cur_eos_prob.squeeze(1) > self.eos_prob_threshold | |
out_lens.masked_fill_((~finished) & cur_finished, step + 1) | |
finished = finished | cur_finished | |
if finished.sum().item() == bsz: | |
break | |
prev_feat_out = cur_extra["feature_out"] | |
feat = torch.cat(feat, dim=1) | |
feat = model.decoder.postnet(feat) + feat | |
eos_prob = torch.cat(eos_prob, dim=1) | |
attn = torch.cat(attn, dim=2) | |
alignment = attn.max(dim=1)[1] | |
feat = feat.reshape(bsz, -1, raw_dim) | |
feat = self.gcmvn_denormalize(feat) | |
eos_prob = eos_prob.repeat_interleave(n_frames_per_step, dim=1) | |
attn = attn.repeat_interleave(n_frames_per_step, dim=2) | |
alignment = alignment.repeat_interleave(n_frames_per_step, dim=1) | |
out_lens = out_lens * n_frames_per_step | |
finalized = [ | |
{ | |
"feature": feat[b, :out_len], | |
"eos_prob": eos_prob[b, :out_len], | |
"attn": attn[b, :, :out_len], | |
"alignment": alignment[b, :out_len], | |
"waveform": self.get_waveform(feat[b, :out_len]), | |
} | |
for b, out_len in zip(range(bsz), out_lens) | |
] | |
if has_targ: | |
assert sample["target"].size(-1) == out_dim | |
tgt_feats = sample["target"].view(bsz, -1, raw_dim) | |
tgt_feats = self.gcmvn_denormalize(tgt_feats) | |
tgt_lens = sample["target_lengths"] * n_frames_per_step | |
for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)): | |
finalized[b]["targ_feature"] = f[:l] | |
finalized[b]["targ_waveform"] = self.get_waveform(f[:l]) | |
return finalized | |
class NonAutoregressiveSpeechGenerator(SpeechGenerator): | |
def generate(self, model, sample, has_targ=False, **kwargs): | |
model.eval() | |
bsz, max_src_len = sample["net_input"]["src_tokens"].size() | |
n_frames_per_step = model.encoder.n_frames_per_step | |
out_dim = model.encoder.out_dim | |
raw_dim = out_dim // n_frames_per_step | |
feat, feat_post, out_lens, log_dur_out, _, _ = model( | |
src_tokens=sample["net_input"]["src_tokens"], | |
src_lengths=sample["net_input"]["src_lengths"], | |
prev_output_tokens=sample["net_input"]["prev_output_tokens"], | |
incremental_state=None, | |
target_lengths=sample["target_lengths"], | |
speaker=sample["speaker"], | |
) | |
if feat_post is not None: | |
feat = feat_post | |
feat = feat.view(bsz, -1, raw_dim) | |
feat = self.gcmvn_denormalize(feat) | |
dur_out = torch.clamp(torch.round(torch.exp(log_dur_out) - 1).long(), min=0) | |
def get_dur_plot_data(d): | |
r = [] | |
for i, dd in enumerate(d): | |
r += [i + 1] * dd.item() | |
return r | |
out_lens = out_lens * n_frames_per_step | |
finalized = [ | |
{ | |
"feature": feat[b, :l] if l > 0 else feat.new_zeros([1, raw_dim]), | |
"waveform": self.get_waveform( | |
feat[b, :l] if l > 0 else feat.new_zeros([1, raw_dim]) | |
), | |
"attn": feat.new_tensor(get_dur_plot_data(dur_out[b])), | |
} | |
for b, l in zip(range(bsz), out_lens) | |
] | |
if has_targ: | |
tgt_feats = sample["target"].view(bsz, -1, raw_dim) | |
tgt_feats = self.gcmvn_denormalize(tgt_feats) | |
tgt_lens = sample["target_lengths"] * n_frames_per_step | |
for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)): | |
finalized[b]["targ_feature"] = f[:l] | |
finalized[b]["targ_waveform"] = self.get_waveform(f[:l]) | |
return finalized | |
class TeacherForcingAutoRegressiveSpeechGenerator(AutoRegressiveSpeechGenerator): | |
def generate(self, model, sample, has_targ=False, **kwargs): | |
model.eval() | |
src_tokens = sample["net_input"]["src_tokens"] | |
src_lens = sample["net_input"]["src_lengths"] | |
prev_out_tokens = sample["net_input"]["prev_output_tokens"] | |
tgt_lens = sample["target_lengths"] | |
n_frames_per_step = model.decoder.n_frames_per_step | |
raw_dim = model.decoder.out_dim // n_frames_per_step | |
bsz = src_tokens.shape[0] | |
feat, eos_prob, extra = model( | |
src_tokens, | |
src_lens, | |
prev_out_tokens, | |
incremental_state=None, | |
target_lengths=tgt_lens, | |
speaker=sample["speaker"], | |
) | |
attn = extra["attn"] # B x T_s x T_t | |
alignment = attn.max(dim=1)[1] | |
feat = feat.reshape(bsz, -1, raw_dim) | |
feat = self.gcmvn_denormalize(feat) | |
eos_prob = eos_prob.repeat_interleave(n_frames_per_step, dim=1) | |
attn = attn.repeat_interleave(n_frames_per_step, dim=2) | |
alignment = alignment.repeat_interleave(n_frames_per_step, dim=1) | |
tgt_lens = sample["target_lengths"] * n_frames_per_step | |
finalized = [ | |
{ | |
"feature": feat[b, :tgt_len], | |
"eos_prob": eos_prob[b, :tgt_len], | |
"attn": attn[b, :, :tgt_len], | |
"alignment": alignment[b, :tgt_len], | |
"waveform": self.get_waveform(feat[b, :tgt_len]), | |
} | |
for b, tgt_len in zip(range(bsz), tgt_lens) | |
] | |
if has_targ: | |
tgt_feats = sample["target"].view(bsz, -1, raw_dim) | |
tgt_feats = self.gcmvn_denormalize(tgt_feats) | |
for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)): | |
finalized[b]["targ_feature"] = f[:l] | |
finalized[b]["targ_waveform"] = self.get_waveform(f[:l]) | |
return finalized | |