Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import types | |
import torch | |
def get_fused_adam_class(): | |
""" | |
Look for the FusedAdam optimizer from apex. We first try to load the | |
"contrib" interface, which is a bit faster than the main interface, | |
but is technically deprecated. | |
""" | |
try: | |
# The "deprecated" interface in recent versions of apex is a bit | |
# faster than the main interface, since we don't use the apex | |
# optimizer. This can be installed by passing the | |
# `--deprecated_fused_adam` option when building apex. | |
global fused_adam_cuda | |
import importlib | |
fused_adam_cuda = importlib.import_module("fused_adam_cuda") | |
return FusedAdamV1 | |
except ImportError: | |
try: | |
# fallback to the newer interface | |
from apex.multi_tensor_apply import multi_tensor_applier | |
from apex.optimizers import FusedAdam as _FusedAdam # noqa | |
if multi_tensor_applier.available: | |
return FusedAdamV2 | |
except ImportError: | |
pass | |
return None | |
class FusedAdamV1(torch.optim.Optimizer): | |
""" | |
Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via | |
``python setup.py install --cuda_ext --cpp_ext``. | |
It has been proposed in `Adam: A Method for Stochastic Optimization`_. | |
Compared to the original version in Apex, the fairseq version casts grads | |
and params to FP32 internally to support ``--memory-efficient-fp16``. | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups. | |
lr (float, optional): learning rate. (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square. (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability. (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
(default: False) NOT SUPPORTED in FusedAdam! | |
eps_inside_sqrt (boolean, optional): in the 'update parameters' step, | |
adds eps to the bias-corrected second moment estimate before | |
evaluating square root instead of adding it to the square root of | |
second moment estimate as in the original paper. (default: False) | |
.. _Adam: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def __init__( | |
self, | |
params, | |
lr=1e-3, | |
bias_correction=True, | |
betas=(0.9, 0.999), | |
eps=1e-8, | |
eps_inside_sqrt=False, | |
weight_decay=0.0, | |
max_grad_norm=0.0, | |
amsgrad=False, | |
use_fp16_stats=False, | |
): | |
global fused_adam_cuda | |
import importlib | |
fused_adam_cuda = importlib.import_module("fused_adam_cuda") | |
if amsgrad: | |
raise RuntimeError("FusedAdam does not support the AMSGrad variant.") | |
defaults = { | |
"lr": lr, | |
"bias_correction": bias_correction, | |
"betas": betas, | |
"eps": eps, | |
"weight_decay": weight_decay, | |
"max_grad_norm": max_grad_norm, | |
} | |
super().__init__(params, defaults) | |
self.eps_mode = 0 if eps_inside_sqrt else 1 | |
self.use_fp16_stats = use_fp16_stats | |
self.FLOAT16_MAX = 65504.0 | |
def supports_memory_efficient_fp16(self): | |
return True | |
def supports_flat_params(self): | |
return True | |
def supports_step_with_scale(self): | |
return True | |
def step(self, closure=None, grads=None, scale=1.0, grad_norms=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
grads (list of tensors, optional): weight gradient to use for the | |
optimizer update. If gradients have type torch.half, parameters | |
are expected to be in type torch.float. (default: None) | |
output params (list of tensors, optional): A reduced precision copy | |
of the updated weights written out in addition to the regular | |
updated weights. Have to be of same type as gradients. (default: None) | |
scale (float, optional): factor to divide gradient tensor values | |
by before applying to weights. (default: 1) | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
if grads is None: | |
grads_group = [None] * len(self.param_groups) | |
# backward compatibility | |
# assuming a list/generator of parameter means single group | |
elif isinstance(grads, types.GeneratorType): | |
grads_group = [grads] | |
elif type(grads[0]) != list: | |
grads_group = [grads] | |
else: | |
grads_group = grads | |
if grad_norms is None: | |
grad_norms = [None] * len(self.param_groups) | |
for group, grads_this_group, grad_norm in zip( | |
self.param_groups, grads_group, grad_norms | |
): | |
if grads_this_group is None: | |
grads_this_group = [None] * len(group["params"]) | |
# compute combined scale factor for this group | |
combined_scale = scale | |
if group.get("max_grad_norm", 0) > 0: | |
# norm is in fact norm*scale | |
clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"] | |
if clip > 1: | |
combined_scale = clip * scale | |
bias_correction = 1 if group.get("bias_correction", 1) else 0 | |
for p, grad in zip(group["params"], grads_this_group): | |
# note: p.grad should not ever be set for correct | |
# operation of mixed precision optimizer that sometimes | |
# sends None gradients | |
if p.grad is None and grad is None: | |
continue | |
if grad is None: | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError( | |
"FusedAdam does not support sparse gradients, " | |
"please consider SparseAdam instead" | |
) | |
if p.device.type == "cpu": | |
p_data_fp32 = p.data.cuda(non_blocking=True).float() | |
out_p = torch.tensor([], dtype=torch.float) | |
else: | |
p_data_fp32 = p.data.float() | |
out_p = p.data | |
state = self.state[p] | |
# State initialization | |
dtype = torch.float16 if self.use_fp16_stats else p_data_fp32.dtype | |
if len(state) == 0: | |
state["step"] = 0 | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(p_data_fp32, dtype=dtype) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32, dtype=dtype) | |
if self.use_fp16_stats: | |
state["exp_avg_scale"] = 1.0 | |
state["exp_avg_sq_scale"] = 1.0 | |
else: | |
device = p_data_fp32.device | |
state["exp_avg"] = state["exp_avg"].to(device, dtype) | |
state["exp_avg_sq"] = state["exp_avg_sq"].to(device, dtype) | |
exp_avg = state["exp_avg"] | |
exp_avg_sq = state["exp_avg_sq"] | |
if self.use_fp16_stats: | |
assert exp_avg.dtype == torch.float16 | |
exp_avg = exp_avg.float() * state["exp_avg_scale"] | |
exp_avg_sq = exp_avg_sq.float() * state["exp_avg_sq_scale"] | |
beta1, beta2 = group["betas"] | |
state["step"] += 1 | |
with torch.cuda.device(p_data_fp32.device): | |
fused_adam_cuda.adam( | |
p_data_fp32, | |
out_p, | |
exp_avg, | |
exp_avg_sq, | |
grad, | |
group["lr"], | |
beta1, | |
beta2, | |
group["eps"], | |
combined_scale, | |
state["step"], | |
self.eps_mode, | |
bias_correction, | |
group["weight_decay"], | |
) | |
if p.device.type == "cpu": | |
p.data.copy_(p_data_fp32, non_blocking=True) | |
if self.use_fp16_stats: | |
def inf_norm(t): | |
return torch.norm(t, float("inf")) | |
# from github.com/openai/jukebox/blob/master/jukebox/utils/fp16.py | |
state["exp_avg_scale"], state["exp_avg_sq_scale"] = ( | |
1e-8 + inf_norm(exp_avg) / self.FLOAT16_MAX, | |
1e-8 + inf_norm(exp_avg_sq) / self.FLOAT16_MAX, | |
) | |
state["exp_avg"], state["exp_avg_sq"] = ( | |
(exp_avg / state["exp_avg_scale"]).half(), | |
(exp_avg_sq / state["exp_avg_sq_scale"]).half(), | |
) | |
return loss | |
try: | |
from apex.multi_tensor_apply import multi_tensor_applier | |
from apex.optimizers import FusedAdam | |
class FusedAdamV2(FusedAdam): | |
""" | |
Compared to the original version in Apex, the fairseq version casts grads | |
and params to FP32 internally to support ``--memory-efficient-fp16``. | |
""" | |
def __init__(self, *args, use_fp16_stats=False, **kwargs): | |
if use_fp16_stats: | |
raise NotImplementedError( | |
"--fp16-adam-stats is only supported with FusedAdamV1" | |
) | |
super().__init__(*args, **kwargs) | |
if not hasattr(self, "multi_tensor_adam"): | |
raise Exception( | |
"Apex installation is outdated. Please install an updated version of apex." | |
) | |
def supports_memory_efficient_fp16(self): | |
return True | |
def supports_flat_params(self): | |
return True | |
def step( | |
self, | |
closure=None, | |
grads=None, | |
output_params=None, | |
scale=None, | |
grad_norms=None, | |
): | |
"""Performs a single optimization step.""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
bias_correction = 1 if group["bias_correction"] else 0 | |
beta1, beta2 = group["betas"] | |
# assume same step across group now to simplify things | |
# per parameter step can be easily support by making it tensor, or pass list into kernel | |
if "step" in group: | |
group["step"] += 1 | |
else: | |
group["step"] = 1 | |
# create lists for multi-tensor apply | |
g_16, p_16, orig_p_16, m_16, v_16 = [], [], [], [], [] | |
g_32, p_32, m_32, v_32 = [], [], [], [] | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
if p.grad.data.is_sparse: | |
raise RuntimeError( | |
"FusedAdam does not support sparse gradients, " | |
"please consider SparseAdam instead" | |
) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(p.data, dtype=torch.float) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like( | |
p.data, dtype=torch.float | |
) | |
else: | |
state["exp_avg"] = state["exp_avg"].to( | |
device=p.data.device, dtype=torch.float | |
) | |
state["exp_avg_sq"] = state["exp_avg_sq"].to( | |
device=p.data.device, dtype=torch.float | |
) | |
if p.dtype == torch.float16: | |
g_16.append(p.grad.data.float()) | |
p_16.append(p.data.float()) | |
orig_p_16.append(p.data) | |
m_16.append(state["exp_avg"]) | |
v_16.append(state["exp_avg_sq"]) | |
elif p.dtype == torch.float32: | |
g_32.append(p.grad.data) | |
p_32.append(p.data) | |
m_32.append(state["exp_avg"]) | |
v_32.append(state["exp_avg_sq"]) | |
else: | |
raise RuntimeError("FusedAdam only support fp16 and fp32.") | |
with torch.cuda.device(p.device): | |
if len(g_16) > 0: | |
multi_tensor_applier( | |
self.multi_tensor_adam, | |
self._dummy_overflow_buf, | |
[g_16, p_16, m_16, v_16], | |
group["lr"], | |
beta1, | |
beta2, | |
group["eps"], | |
group["step"], | |
self.adam_w_mode, | |
bias_correction, | |
group["weight_decay"], | |
) | |
for orig_p, p in zip(orig_p_16, p_16): | |
orig_p.copy_(p.data) | |
if len(g_32) > 0: | |
multi_tensor_applier( | |
self.multi_tensor_adam, | |
self._dummy_overflow_buf, | |
[g_32, p_32, m_32, v_32], | |
group["lr"], | |
beta1, | |
beta2, | |
group["eps"], | |
group["step"], | |
self.adam_w_mode, | |
bias_correction, | |
group["weight_decay"], | |
) | |
return loss | |
except ImportError: | |
pass | |