Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import json | |
| import logging | |
| from typing import Dict | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from fairseq.data.audio.audio_utils import ( | |
| TTSSpectrogram, | |
| get_fourier_basis, | |
| get_mel_filters, | |
| get_window, | |
| ) | |
| from fairseq.data.audio.speech_to_text_dataset import S2TDataConfig | |
| from fairseq.models import BaseFairseqModel, register_model | |
| from fairseq.models.text_to_speech.codehifigan import CodeGenerator as CodeHiFiGANModel | |
| from fairseq.models.text_to_speech.hifigan import Generator as HiFiGANModel | |
| from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface | |
| logger = logging.getLogger(__name__) | |
| class PseudoInverseMelScale(torch.nn.Module): | |
| def __init__(self, n_stft, n_mels, sample_rate, f_min, f_max) -> None: | |
| super(PseudoInverseMelScale, self).__init__() | |
| self.n_mels = n_mels | |
| basis = get_mel_filters(sample_rate, (n_stft - 1) * 2, n_mels, f_min, f_max) | |
| basis = torch.pinverse(basis) # F x F_mel | |
| self.register_buffer("basis", basis) | |
| def forward(self, melspec: torch.Tensor) -> torch.Tensor: | |
| # pack batch | |
| shape = melspec.shape # B_1 x ... x B_K x F_mel x T | |
| n_mels, time = shape[-2], shape[-1] | |
| melspec = melspec.view(-1, n_mels, time) | |
| freq, _ = self.basis.size() # F x F_mel | |
| assert self.n_mels == n_mels, (self.n_mels, n_mels) | |
| specgram = self.basis.matmul(melspec).clamp(min=0) | |
| # unpack batch | |
| specgram = specgram.view(shape[:-2] + (freq, time)) | |
| return specgram | |
| class GriffinLim(torch.nn.Module): | |
| def __init__( | |
| self, | |
| n_fft: int, | |
| win_length: int, | |
| hop_length: int, | |
| n_iter: int, | |
| window_fn=torch.hann_window, | |
| ): | |
| super(GriffinLim, self).__init__() | |
| self.transform = TTSSpectrogram( | |
| n_fft, win_length, hop_length, return_phase=True | |
| ) | |
| basis = get_fourier_basis(n_fft) | |
| basis = torch.pinverse(n_fft / hop_length * basis).T[:, None, :] | |
| basis *= get_window(window_fn, n_fft, win_length) | |
| self.register_buffer("basis", basis) | |
| self.n_fft = n_fft | |
| self.win_length = win_length | |
| self.hop_length = hop_length | |
| self.n_iter = n_iter | |
| self.tiny = 1.1754944e-38 | |
| def get_window_sum_square( | |
| cls, n_frames, hop_length, win_length, n_fft, window_fn=torch.hann_window | |
| ) -> torch.Tensor: | |
| w_sq = get_window(window_fn, n_fft, win_length) ** 2 | |
| n = n_fft + hop_length * (n_frames - 1) | |
| x = torch.zeros(n, dtype=torch.float32) | |
| for i in range(n_frames): | |
| ofst = i * hop_length | |
| x[ofst : min(n, ofst + n_fft)] += w_sq[: max(0, min(n_fft, n - ofst))] | |
| return x | |
| def inverse(self, magnitude: torch.Tensor, phase) -> torch.Tensor: | |
| x = torch.cat( | |
| [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1 | |
| ) | |
| x = F.conv_transpose1d(x, self.basis, stride=self.hop_length) | |
| win_sum_sq = self.get_window_sum_square( | |
| magnitude.shape[-1], | |
| hop_length=self.hop_length, | |
| win_length=self.win_length, | |
| n_fft=self.n_fft, | |
| ).to(magnitude.device) | |
| # remove modulation effects | |
| approx_nonzero_indices = win_sum_sq > self.tiny | |
| x[:, :, approx_nonzero_indices] /= win_sum_sq[approx_nonzero_indices] | |
| x *= self.n_fft / self.hop_length | |
| x = x[:, :, self.n_fft // 2 :] | |
| x = x[:, :, : -self.n_fft // 2 :] | |
| return x | |
| def forward(self, specgram: torch.Tensor) -> torch.Tensor: | |
| angles = np.angle(np.exp(2j * np.pi * np.random.rand(*specgram.shape))) | |
| angles = torch.from_numpy(angles).to(specgram) | |
| _specgram = specgram.view(-1, specgram.shape[-2], specgram.shape[-1]) | |
| waveform = self.inverse(_specgram, angles).squeeze(1) | |
| for _ in range(self.n_iter): | |
| _, angles = self.transform(waveform) | |
| waveform = self.inverse(_specgram, angles).squeeze(1) | |
| return waveform.squeeze(0) | |
| class GriffinLimVocoder(nn.Module): | |
| def __init__( | |
| self, | |
| sample_rate, | |
| win_size, | |
| hop_size, | |
| n_fft, | |
| n_mels, | |
| f_min, | |
| f_max, | |
| window_fn, | |
| spec_bwd_max_iter=32, | |
| fp16=False, | |
| ): | |
| super().__init__() | |
| self.inv_mel_transform = PseudoInverseMelScale( | |
| n_stft=n_fft // 2 + 1, | |
| n_mels=n_mels, | |
| sample_rate=sample_rate, | |
| f_min=f_min, | |
| f_max=f_max, | |
| ) | |
| self.gl_transform = GriffinLim( | |
| n_fft=n_fft, | |
| win_length=win_size, | |
| hop_length=hop_size, | |
| window_fn=window_fn, | |
| n_iter=spec_bwd_max_iter, | |
| ) | |
| if fp16: | |
| self.half() | |
| self.inv_mel_transform.half() | |
| self.gl_transform.half() | |
| else: | |
| self.float() | |
| self.inv_mel_transform.float() | |
| self.gl_transform.float() | |
| def forward(self, x): | |
| # x: (B x) T x D -> (B x) 1 x T | |
| # NOTE: batched forward produces noisier waveform. recommend running | |
| # one utterance at a time | |
| self.eval() | |
| x = x.exp().transpose(-1, -2) | |
| x = self.inv_mel_transform(x) | |
| x = self.gl_transform(x) | |
| return x | |
| def from_data_cfg(cls, args, data_cfg: S2TDataConfig): | |
| feat_cfg = data_cfg.config["features"] | |
| window_fn = getattr(torch, feat_cfg["window_fn"] + "_window") | |
| return cls( | |
| sample_rate=feat_cfg["sample_rate"], | |
| win_size=int(feat_cfg["win_len_t"] * feat_cfg["sample_rate"]), | |
| hop_size=int(feat_cfg["hop_len_t"] * feat_cfg["sample_rate"]), | |
| n_fft=feat_cfg["n_fft"], | |
| n_mels=feat_cfg["n_mels"], | |
| f_min=feat_cfg["f_min"], | |
| f_max=feat_cfg["f_max"], | |
| window_fn=window_fn, | |
| spec_bwd_max_iter=args.spec_bwd_max_iter, | |
| fp16=args.fp16, | |
| ) | |
| class HiFiGANVocoder(nn.Module): | |
| def __init__( | |
| self, checkpoint_path: str, model_cfg: Dict[str, str], fp16: bool = False | |
| ) -> None: | |
| super().__init__() | |
| self.model = HiFiGANModel(model_cfg) | |
| state_dict = torch.load(checkpoint_path) | |
| self.model.load_state_dict(state_dict["generator"]) | |
| if fp16: | |
| self.model.half() | |
| logger.info(f"loaded HiFiGAN checkpoint from {checkpoint_path}") | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| # (B x) T x D -> (B x) 1 x T | |
| model = self.model.eval() | |
| if len(x.shape) == 2: | |
| return model(x.unsqueeze(0).transpose(1, 2)).detach().squeeze(0) | |
| else: | |
| return model(x.transpose(-1, -2)).detach() | |
| def from_data_cfg(cls, args, data_cfg: S2TDataConfig): | |
| vocoder_cfg = data_cfg.vocoder | |
| assert vocoder_cfg.get("type", "griffin_lim") == "hifigan" | |
| with open(vocoder_cfg["config"]) as f: | |
| model_cfg = json.load(f) | |
| return cls(vocoder_cfg["checkpoint"], model_cfg, fp16=args.fp16) | |
| class CodeHiFiGANVocoder(BaseFairseqModel): | |
| def __init__( | |
| self, checkpoint_path: str, model_cfg: Dict[str, str], fp16: bool = False | |
| ) -> None: | |
| super().__init__() | |
| self.model = CodeHiFiGANModel(model_cfg) | |
| if torch.cuda.is_available(): | |
| state_dict = torch.load(checkpoint_path) | |
| else: | |
| state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) | |
| self.model.load_state_dict(state_dict["generator"]) | |
| self.model.eval() | |
| if fp16: | |
| self.model.half() | |
| self.model.remove_weight_norm() | |
| logger.info(f"loaded CodeHiFiGAN checkpoint from {checkpoint_path}") | |
| def forward(self, x: Dict[str, torch.Tensor], dur_prediction=False) -> torch.Tensor: | |
| assert "code" in x | |
| x["dur_prediction"] = dur_prediction | |
| # remove invalid code | |
| mask = x["code"] >= 0 | |
| x["code"] = x["code"][mask].unsqueeze(dim=0) | |
| if "f0" in x: | |
| f0_up_ratio = x["f0"].size(1) // x["code"].size(1) | |
| mask = mask.unsqueeze(2).repeat(1, 1, f0_up_ratio).view(-1, x["f0"].size(1)) | |
| x["f0"] = x["f0"][mask].unsqueeze(dim=0) | |
| return self.model(**x).detach().squeeze() | |
| def from_data_cfg(cls, args, data_cfg): | |
| vocoder_cfg = data_cfg.vocoder | |
| assert vocoder_cfg is not None, "vocoder not specified in the data config" | |
| with open(vocoder_cfg["config"]) as f: | |
| model_cfg = json.load(f) | |
| return cls(vocoder_cfg["checkpoint"], model_cfg, fp16=args.fp16) | |
| def hub_models(cls): | |
| base_url = "http://dl.fbaipublicfiles.com/fairseq/vocoder" | |
| model_ids = [ | |
| "unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur", | |
| "unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_es_css10_dur", | |
| "unit_hifigan_HK_layer12.km2500_frame_TAT-TTS", | |
| ] | |
| return {i: f"{base_url}/{i}.tar.gz" for i in model_ids} | |
| def from_pretrained( | |
| cls, | |
| model_name_or_path, | |
| checkpoint_file="model.pt", | |
| data_name_or_path=".", | |
| config="config.json", | |
| fp16: bool = False, | |
| **kwargs, | |
| ): | |
| from fairseq import hub_utils | |
| x = hub_utils.from_pretrained( | |
| model_name_or_path, | |
| checkpoint_file, | |
| data_name_or_path, | |
| archive_map=cls.hub_models(), | |
| config_yaml=config, | |
| fp16=fp16, | |
| is_vocoder=True, | |
| **kwargs, | |
| ) | |
| with open(f"{x['args']['data']}/{config}") as f: | |
| vocoder_cfg = json.load(f) | |
| assert len(x["args"]["model_path"]) == 1, "Too many vocoder models in the input" | |
| vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg) | |
| return VocoderHubInterface(vocoder_cfg, vocoder) | |
| def get_vocoder(args, data_cfg: S2TDataConfig): | |
| if args.vocoder == "griffin_lim": | |
| return GriffinLimVocoder.from_data_cfg(args, data_cfg) | |
| elif args.vocoder == "hifigan": | |
| return HiFiGANVocoder.from_data_cfg(args, data_cfg) | |
| elif args.vocoder == "code_hifigan": | |
| return CodeHiFiGANVocoder.from_data_cfg(args, data_cfg) | |
| else: | |
| raise ValueError("Unknown vocoder") | |