Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""isort:skip_file""" | |
import argparse | |
import importlib | |
import os | |
from contextlib import ExitStack | |
from fairseq.dataclass import FairseqDataclass | |
from fairseq.dataclass.utils import merge_with_parent | |
from hydra.core.config_store import ConfigStore | |
from omegaconf import open_dict, OmegaConf | |
from .composite_encoder import CompositeEncoder | |
from .distributed_fairseq_model import DistributedFairseqModel | |
from .fairseq_decoder import FairseqDecoder | |
from .fairseq_encoder import FairseqEncoder | |
from .fairseq_incremental_decoder import FairseqIncrementalDecoder | |
from .fairseq_model import ( | |
BaseFairseqModel, | |
FairseqEncoderDecoderModel, | |
FairseqEncoderModel, | |
FairseqLanguageModel, | |
FairseqModel, | |
FairseqMultiModel, | |
) | |
MODEL_REGISTRY = {} | |
MODEL_DATACLASS_REGISTRY = {} | |
ARCH_MODEL_REGISTRY = {} | |
ARCH_MODEL_NAME_REGISTRY = {} | |
ARCH_MODEL_INV_REGISTRY = {} | |
ARCH_CONFIG_REGISTRY = {} | |
__all__ = [ | |
"BaseFairseqModel", | |
"CompositeEncoder", | |
"DistributedFairseqModel", | |
"FairseqDecoder", | |
"FairseqEncoder", | |
"FairseqEncoderDecoderModel", | |
"FairseqEncoderModel", | |
"FairseqIncrementalDecoder", | |
"FairseqLanguageModel", | |
"FairseqModel", | |
"FairseqMultiModel", | |
] | |
def build_model(cfg: FairseqDataclass, task, from_checkpoint=False): | |
model = None | |
model_type = getattr(cfg, "_name", None) or getattr(cfg, "arch", None) | |
if not model_type and len(cfg) == 1: | |
# this is hit if config object is nested in directory that is named after model type | |
model_type = next(iter(cfg)) | |
if model_type in MODEL_DATACLASS_REGISTRY: | |
cfg = cfg[model_type] | |
else: | |
raise Exception( | |
"Could not infer model type from directory. Please add _name field to indicate model type. " | |
"Available models: " | |
+ str(MODEL_DATACLASS_REGISTRY.keys()) | |
+ " Requested model type: " | |
+ model_type | |
) | |
if model_type in ARCH_MODEL_REGISTRY: | |
# case 1: legacy models | |
model = ARCH_MODEL_REGISTRY[model_type] | |
elif model_type in MODEL_DATACLASS_REGISTRY: | |
# case 2: config-driven models | |
model = MODEL_REGISTRY[model_type] | |
if model_type in MODEL_DATACLASS_REGISTRY: | |
# set defaults from dataclass. note that arch name and model name can be the same | |
dc = MODEL_DATACLASS_REGISTRY[model_type] | |
if isinstance(cfg, argparse.Namespace): | |
cfg = dc.from_namespace(cfg) | |
else: | |
cfg = merge_with_parent(dc(), cfg, from_checkpoint) | |
else: | |
if model_type in ARCH_CONFIG_REGISTRY: | |
with open_dict(cfg) if OmegaConf.is_config(cfg) else ExitStack(): | |
# this calls the different "arch" functions (like base_architecture()) that you indicate | |
# if you specify --arch on the command line. this is only applicable to the old argparse based models | |
# hydra models should expose different architectures via different config files | |
# it will modify the cfg object and default parameters according to the arch | |
ARCH_CONFIG_REGISTRY[model_type](cfg) | |
assert model is not None, ( | |
f"Could not infer model type from {cfg}. " | |
"Available models: {}".format(MODEL_DATACLASS_REGISTRY.keys()) | |
+ f" Requested model type: {model_type}" | |
) | |
return model.build_model(cfg, task) | |
def register_model(name, dataclass=None): | |
""" | |
New model types can be added to fairseq with the :func:`register_model` | |
function decorator. | |
For example:: | |
@register_model('lstm') | |
class LSTM(FairseqEncoderDecoderModel): | |
(...) | |
.. note:: All models must implement the :class:`BaseFairseqModel` interface. | |
Typically you will extend :class:`FairseqEncoderDecoderModel` for | |
sequence-to-sequence tasks or :class:`FairseqLanguageModel` for | |
language modeling tasks. | |
Args: | |
name (str): the name of the model | |
""" | |
def register_model_cls(cls): | |
if name in MODEL_REGISTRY: | |
raise ValueError("Cannot register duplicate model ({})".format(name)) | |
if not issubclass(cls, BaseFairseqModel): | |
raise ValueError( | |
"Model ({}: {}) must extend BaseFairseqModel".format(name, cls.__name__) | |
) | |
MODEL_REGISTRY[name] = cls | |
if dataclass is not None and not issubclass(dataclass, FairseqDataclass): | |
raise ValueError( | |
"Dataclass {} must extend FairseqDataclass".format(dataclass) | |
) | |
cls.__dataclass = dataclass | |
if dataclass is not None: | |
MODEL_DATACLASS_REGISTRY[name] = dataclass | |
cs = ConfigStore.instance() | |
node = dataclass() | |
node._name = name | |
cs.store(name=name, group="model", node=node, provider="fairseq") | |
def noop(_): | |
pass | |
return cls | |
return register_model_cls | |
def register_model_architecture(model_name, arch_name): | |
""" | |
New model architectures can be added to fairseq with the | |
:func:`register_model_architecture` function decorator. After registration, | |
model architectures can be selected with the ``--arch`` command-line | |
argument. | |
For example:: | |
@register_model_architecture('lstm', 'lstm_luong_wmt_en_de') | |
def lstm_luong_wmt_en_de(cfg): | |
args.encoder_embed_dim = getattr(cfg.model, 'encoder_embed_dim', 1000) | |
(...) | |
The decorated function should take a single argument *cfg*, which is a | |
:class:`omegaconf.DictConfig`. The decorated function should modify these | |
arguments in-place to match the desired architecture. | |
Args: | |
model_name (str): the name of the Model (Model must already be | |
registered) | |
arch_name (str): the name of the model architecture (``--arch``) | |
""" | |
def register_model_arch_fn(fn): | |
if model_name not in MODEL_REGISTRY: | |
raise ValueError( | |
"Cannot register model architecture for unknown model type ({})".format( | |
model_name | |
) | |
) | |
if arch_name in ARCH_MODEL_REGISTRY: | |
raise ValueError( | |
"Cannot register duplicate model architecture ({})".format(arch_name) | |
) | |
if not callable(fn): | |
raise ValueError( | |
"Model architecture must be callable ({})".format(arch_name) | |
) | |
ARCH_MODEL_REGISTRY[arch_name] = MODEL_REGISTRY[model_name] | |
ARCH_MODEL_NAME_REGISTRY[arch_name] = model_name | |
ARCH_MODEL_INV_REGISTRY.setdefault(model_name, []).append(arch_name) | |
ARCH_CONFIG_REGISTRY[arch_name] = fn | |
return fn | |
return register_model_arch_fn | |
def import_models(models_dir, namespace): | |
for file in os.listdir(models_dir): | |
path = os.path.join(models_dir, file) | |
if ( | |
not file.startswith("_") | |
and not file.startswith(".") | |
and (file.endswith(".py") or os.path.isdir(path)) | |
): | |
model_name = file[: file.find(".py")] if file.endswith(".py") else file | |
importlib.import_module(namespace + "." + model_name) | |
# extra `model_parser` for sphinx | |
if model_name in MODEL_REGISTRY: | |
parser = argparse.ArgumentParser(add_help=False) | |
group_archs = parser.add_argument_group("Named architectures") | |
group_archs.add_argument( | |
"--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name] | |
) | |
group_args = parser.add_argument_group( | |
"Additional command-line arguments" | |
) | |
MODEL_REGISTRY[model_name].add_args(group_args) | |
globals()[model_name + "_parser"] = parser | |
# automatically import any Python files in the models/ directory | |
models_dir = os.path.dirname(__file__) | |
import_models(models_dir, "fairseq.models") | |