Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from typing import Dict, List, Tuple | |
import numpy as np | |
import torch | |
from fairseq.data import Dictionary, FairseqDataset, data_utils | |
from fairseq.data.concat_dataset import ConcatDataset | |
from fairseq.data.legacy.block_pair_dataset import BlockPairDataset | |
from fairseq.data.token_block_dataset import TokenBlockDataset | |
class MaskedLMDataset(FairseqDataset): | |
""" | |
A wrapper Dataset for masked language modelling. The dataset | |
wraps around TokenBlockDataset or BlockedPairDataset and creates a batch | |
where the input blocks are masked according to the specified masking | |
probability. Additionally the batch can also contain sentence level targets | |
if this is specified. | |
Args: | |
dataset: Dataset which generates blocks of data. Only BlockPairDataset | |
and TokenBlockDataset are supported. | |
sizes: Sentence lengths | |
vocab: Dictionary with the vocabulary and special tokens. | |
pad_idx: Id of padding token in dictionary | |
mask_idx: Id of mask token in dictionary | |
classif_token_idx: Id of classification token in dictionary. This is the | |
token associated with the sentence embedding (Eg: CLS for BERT) | |
sep_token_idx: Id of separator token in dictionary | |
(Eg: SEP in BERT) | |
seed: Seed for random number generator for reproducibility. | |
shuffle: Shuffle the elements before batching. | |
has_pairs: Specifies whether the underlying dataset | |
generates a pair of blocks along with a sentence_target or not. | |
Setting it to True assumes that the underlying dataset generates a | |
label for the pair of sentences which is surfaced as | |
sentence_target. The default value assumes a single block with no | |
sentence target. | |
segment_id: An optional segment id for filling in the segment labels | |
when we are in the single block setting (Eg: XLM). Default is 0. | |
masking_ratio: specifies what percentage of the blocks should be masked. | |
masking_prob: specifies the probability of a given token being | |
replaced with the "MASK" token. | |
random_token_prob: specifies the probability of a given token being | |
replaced by a random token from the vocabulary. | |
""" | |
def __init__( | |
self, | |
dataset: FairseqDataset, | |
sizes: np.ndarray, | |
vocab: Dictionary, | |
pad_idx: int, | |
mask_idx: int, | |
classif_token_idx: int, | |
sep_token_idx: int, | |
seed: int = 1, | |
shuffle: bool = True, | |
has_pairs: bool = True, | |
segment_id: int = 0, | |
masking_ratio: float = 0.15, | |
masking_prob: float = 0.8, | |
random_token_prob: float = 0.1, | |
): | |
# Make sure the input datasets are the ones supported | |
assert ( | |
isinstance(dataset, TokenBlockDataset) | |
or isinstance(dataset, BlockPairDataset) | |
or isinstance(dataset, ConcatDataset) | |
), ( | |
"MaskedLMDataset only wraps TokenBlockDataset or BlockPairDataset or " | |
"ConcatDataset" | |
) | |
self.dataset = dataset | |
self.sizes = np.array(sizes) | |
self.vocab = vocab | |
self.pad_idx = pad_idx | |
self.mask_idx = mask_idx | |
self.classif_token_idx = classif_token_idx | |
self.sep_token_idx = sep_token_idx | |
self.shuffle = shuffle | |
self.seed = seed | |
self.has_pairs = has_pairs | |
self.segment_id = segment_id | |
self.masking_ratio = masking_ratio | |
self.masking_prob = masking_prob | |
self.random_token_prob = random_token_prob | |
# If we have only one block then sizes needs to be updated to include | |
# the classification token | |
if not has_pairs: | |
self.sizes = self.sizes + 1 | |
def __getitem__(self, index: int): | |
# if has_pairs, then expect 2 blocks and a sentence target | |
if self.has_pairs: | |
(block_one, block_two, sentence_target) = self.dataset[index] | |
else: | |
block_one = self.dataset[index] | |
return { | |
"id": index, | |
"block_one": block_one, | |
"block_two": block_two if self.has_pairs else None, | |
"sentence_target": sentence_target if self.has_pairs else None, | |
} | |
def __len__(self): | |
return len(self.dataset) | |
def _mask_block( | |
self, | |
sentence: np.ndarray, | |
mask_idx: int, | |
pad_idx: int, | |
dictionary_token_range: Tuple, | |
): | |
""" | |
Mask tokens for Masked Language Model training | |
Samples mask_ratio tokens that will be predicted by LM. | |
Note:This function may not be efficient enough since we had multiple | |
conversions between np and torch, we can replace them with torch | |
operators later. | |
Args: | |
sentence: 1d tensor to be masked | |
mask_idx: index to use for masking the sentence | |
pad_idx: index to use for masking the target for tokens we aren't | |
predicting | |
dictionary_token_range: range of indices in dictionary which can | |
be used for random word replacement | |
(e.g. without special characters) | |
Return: | |
masked_sent: masked sentence | |
target: target with words which we are not predicting replaced | |
by pad_idx | |
""" | |
masked_sent = np.copy(sentence) | |
sent_length = len(sentence) | |
mask_num = math.ceil(sent_length * self.masking_ratio) | |
mask = np.random.choice(sent_length, mask_num, replace=False) | |
target = np.copy(sentence) | |
for i in range(sent_length): | |
if i in mask: | |
rand = np.random.random() | |
# replace with mask if probability is less than masking_prob | |
# (Eg: 0.8) | |
if rand < self.masking_prob: | |
masked_sent[i] = mask_idx | |
# replace with random token if probability is less than | |
# masking_prob + random_token_prob (Eg: 0.9) | |
elif rand < (self.masking_prob + self.random_token_prob): | |
# sample random token from dictionary | |
masked_sent[i] = np.random.randint( | |
dictionary_token_range[0], dictionary_token_range[1] | |
) | |
else: | |
target[i] = pad_idx | |
return masked_sent, target | |
def _collate(self, samples: List[Dict], pad_idx: int, eos_idx: int): | |
""" | |
Does the heavy lifting for creating a batch from the input list of | |
examples. The logic is as follows: | |
1. Mask the input blocks. In case has_pair is True then we have 2 | |
blocks to mask. | |
2. Prepend the first masked block tensor with the special token | |
used as sentence embedding. Eg: CLS in BERT. This happens | |
irrespective of the value of has_pair. | |
3. If has_pair is True, then append the first masked block with the | |
special separator token (eg: SEP for BERT) and compute segment | |
label accordingly. In this case, also append the second masked | |
block with this special separator token and compute its segment | |
label. | |
4. For the targets tensor, prepend and append with padding index | |
accordingly. | |
5. Concatenate all tensors. | |
""" | |
if len(samples) == 0: | |
return {} | |
# To ensure determinism, we reset the state of the PRNG after every | |
# batch based on the seed and the first id of the batch. This ensures | |
# that across epochs we get the same mask for the same example. This | |
# is needed for reproducibility and is how BERT does masking | |
# TODO: Can we add deteminism without this constraint? | |
with data_utils.numpy_seed(self.seed + samples[0]["id"]): | |
for s in samples: | |
# token range is needed for replacing with random token during | |
# masking | |
token_range = (self.vocab.nspecial, len(self.vocab)) | |
# mask according to specified probabilities. | |
masked_blk_one, masked_tgt_one = self._mask_block( | |
s["block_one"], | |
self.mask_idx, | |
self.pad_idx, | |
token_range, | |
) | |
tokens = np.concatenate([[self.classif_token_idx], masked_blk_one]) | |
targets = np.concatenate([[self.pad_idx], masked_tgt_one]) | |
segments = np.ones(len(tokens)) * self.segment_id | |
# if has_pairs is True then we need to add the SEP token to both | |
# the blocks after masking and re-compute segments based on the new | |
# lengths. | |
if self.has_pairs: | |
tokens_one = np.concatenate([tokens, [self.sep_token_idx]]) | |
targets_one = np.concatenate([targets, [self.pad_idx]]) | |
masked_blk_two, masked_tgt_two = self._mask_block( | |
s["block_two"], self.mask_idx, self.pad_idx, token_range | |
) | |
tokens_two = np.concatenate([masked_blk_two, [self.sep_token_idx]]) | |
targets_two = np.concatenate([masked_tgt_two, [self.pad_idx]]) | |
# block + 1 sep + 1 special (CLS) | |
segments_one = np.zeros(len(tokens_one)) | |
# block + 1 sep | |
segments_two = np.ones(len(tokens_two)) | |
tokens = np.concatenate([tokens_one, tokens_two]) | |
targets = np.concatenate([targets_one, targets_two]) | |
segments = np.concatenate([segments_one, segments_two]) | |
s["source"] = torch.LongTensor(tokens) | |
s["segment_labels"] = torch.LongTensor(segments) | |
s["lm_target"] = torch.LongTensor(targets) | |
def merge(key): | |
return data_utils.collate_tokens( | |
[s[key] for s in samples], pad_idx, eos_idx, left_pad=False | |
) | |
return { | |
"id": torch.LongTensor([s["id"] for s in samples]), | |
"ntokens": sum(len(s["source"]) for s in samples), | |
"net_input": { | |
"src_tokens": merge("source"), | |
"segment_labels": merge("segment_labels"), | |
}, | |
"lm_target": merge("lm_target"), | |
"sentence_target": torch.LongTensor([s["sentence_target"] for s in samples]) | |
if self.has_pairs | |
else None, | |
"nsentences": len(samples), | |
} | |
def collater(self, samples: List[Dict]): | |
"""Merge a list of samples to form a mini-batch. | |
Args: | |
samples (List[dict]): samples to collate | |
Returns: | |
dict: a mini-batch of data | |
""" | |
return self._collate(samples, self.vocab.pad(), self.vocab.eos()) | |
def num_tokens(self, index: int): | |
""" | |
Return the number of tokens in a sample. This value is used to | |
enforce max-tokens during batching. | |
""" | |
return self.sizes[index] | |
def size(self, index: int): | |
""" | |
Return an example's size as a float or tuple. This value is used when | |
filtering a dataset with max-positions. | |
""" | |
return self.sizes[index] | |
def ordered_indices(self): | |
""" | |
Return an ordered list of indices. Batches will be constructed based | |
on this order. | |
""" | |
if self.shuffle: | |
return np.random.permutation(len(self)) | |
else: | |
order = [np.arange(len(self))] | |
order.append(self.sizes) | |
return np.lexsort(order) | |
def supports_prefetch(self): | |
return getattr(self.dataset, "supports_prefetch", False) | |
def prefetch(self, indices): | |
self.dataset.prefetch(indices) | |