Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import mmap | |
from pathlib import Path | |
import io | |
from typing import BinaryIO, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from fairseq.data.audio.waveform_transforms import CompositeAudioWaveformTransform | |
SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"} | |
FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"} | |
def convert_waveform( | |
waveform: Union[np.ndarray, torch.Tensor], | |
sample_rate: int, | |
normalize_volume: bool = False, | |
to_mono: bool = False, | |
to_sample_rate: Optional[int] = None, | |
) -> Tuple[Union[np.ndarray, torch.Tensor], int]: | |
"""convert a waveform: | |
- to a target sample rate | |
- from multi-channel to mono channel | |
- volume normalization | |
Args: | |
waveform (numpy.ndarray or torch.Tensor): 2D original waveform | |
(channels x length) | |
sample_rate (int): original sample rate | |
normalize_volume (bool): perform volume normalization | |
to_mono (bool): convert to mono channel if having multiple channels | |
to_sample_rate (Optional[int]): target sample rate | |
Returns: | |
waveform (numpy.ndarray): converted 2D waveform (channels x length) | |
sample_rate (float): target sample rate | |
""" | |
try: | |
import torchaudio.sox_effects as ta_sox | |
except ImportError: | |
raise ImportError("Please install torchaudio: pip install torchaudio") | |
effects = [] | |
if normalize_volume: | |
effects.append(["gain", "-n"]) | |
if to_sample_rate is not None and to_sample_rate != sample_rate: | |
effects.append(["rate", f"{to_sample_rate}"]) | |
if to_mono and waveform.shape[0] > 1: | |
effects.append(["channels", "1"]) | |
if len(effects) > 0: | |
is_np_input = isinstance(waveform, np.ndarray) | |
_waveform = torch.from_numpy(waveform) if is_np_input else waveform | |
converted, converted_sample_rate = ta_sox.apply_effects_tensor( | |
_waveform, sample_rate, effects | |
) | |
if is_np_input: | |
converted = converted.numpy() | |
return converted, converted_sample_rate | |
return waveform, sample_rate | |
def get_waveform( | |
path_or_fp: Union[str, BinaryIO], | |
normalization: bool = True, | |
mono: bool = True, | |
frames: int = -1, | |
start: int = 0, | |
always_2d: bool = True, | |
output_sample_rate: Optional[int] = None, | |
normalize_volume: bool = False, | |
waveform_transforms: Optional[CompositeAudioWaveformTransform] = None, | |
) -> Tuple[np.ndarray, int]: | |
"""Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio. | |
Args: | |
path_or_fp (str or BinaryIO): the path or file-like object | |
normalization (bool): normalize values to [-1, 1] (Default: True) | |
mono (bool): convert multi-channel audio to mono-channel one | |
frames (int): the number of frames to read. (-1 for reading all) | |
start (int): Where to start reading. A negative value counts from the end. | |
always_2d (bool): always return 2D array even for mono-channel audios | |
output_sample_rate (Optional[int]): output sample rate | |
normalize_volume (bool): normalize volume | |
Returns: | |
waveform (numpy.ndarray): 1D or 2D waveform (channels x length) | |
sample_rate (float): sample rate | |
""" | |
if isinstance(path_or_fp, str): | |
ext = Path(path_or_fp).suffix | |
if ext not in SF_AUDIO_FILE_EXTENSIONS: | |
raise ValueError(f"Unsupported audio format: {ext}") | |
try: | |
import soundfile as sf | |
except ImportError: | |
raise ImportError("Please install soundfile: pip install soundfile") | |
waveform, sample_rate = sf.read( | |
path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start | |
) | |
waveform = waveform.T # T x C -> C x T | |
waveform, sample_rate = convert_waveform( | |
waveform, | |
sample_rate, | |
normalize_volume=normalize_volume, | |
to_mono=mono, | |
to_sample_rate=output_sample_rate, | |
) | |
if not normalization: | |
waveform *= 2**15 # denormalized to 16-bit signed integers | |
if waveform_transforms is not None: | |
waveform, sample_rate = waveform_transforms(waveform, sample_rate) | |
if not always_2d: | |
waveform = waveform.squeeze(axis=0) | |
return waveform, sample_rate | |
def get_features_from_npy_or_audio(path, waveform_transforms=None): | |
ext = Path(path).suffix | |
if ext not in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: | |
raise ValueError(f'Unsupported file format for "{path}"') | |
return ( | |
np.load(path) | |
if ext == ".npy" | |
else get_fbank(path, waveform_transforms=waveform_transforms) | |
) | |
def get_features_or_waveform_from_stored_zip( | |
path, | |
byte_offset, | |
byte_size, | |
need_waveform=False, | |
use_sample_rate=None, | |
waveform_transforms=None, | |
): | |
assert path.endswith(".zip") | |
data = read_from_stored_zip(path, byte_offset, byte_size) | |
f = io.BytesIO(data) | |
if is_npy_data(data): | |
features_or_waveform = np.load(f) | |
elif is_sf_audio_data(data): | |
features_or_waveform = ( | |
get_waveform( | |
f, | |
always_2d=False, | |
output_sample_rate=use_sample_rate, | |
waveform_transforms=waveform_transforms, | |
)[0] | |
if need_waveform | |
else get_fbank(f, waveform_transforms=waveform_transforms) | |
) | |
else: | |
raise ValueError(f'Unknown file format for "{path}"') | |
return features_or_waveform | |
def get_features_or_waveform( | |
path: str, need_waveform=False, use_sample_rate=None, waveform_transforms=None | |
): | |
"""Get speech features from .npy file or waveform from .wav/.flac file. | |
The file may be inside an uncompressed ZIP file and is accessed via byte | |
offset and length. | |
Args: | |
path (str): File path in the format of "<.npy/.wav/.flac path>" or | |
"<zip path>:<byte offset>:<byte length>". | |
need_waveform (bool): return waveform instead of features. | |
use_sample_rate (int): change sample rate for the input wave file | |
Returns: | |
features_or_waveform (numpy.ndarray): speech features or waveform. | |
""" | |
_path, slice_ptr = parse_path(path) | |
if len(slice_ptr) == 0: | |
if need_waveform: | |
return get_waveform( | |
_path, | |
always_2d=False, | |
output_sample_rate=use_sample_rate, | |
waveform_transforms=waveform_transforms, | |
)[0] | |
return get_features_from_npy_or_audio( | |
_path, waveform_transforms=waveform_transforms | |
) | |
elif len(slice_ptr) == 2: | |
features_or_waveform = get_features_or_waveform_from_stored_zip( | |
_path, | |
slice_ptr[0], | |
slice_ptr[1], | |
need_waveform=need_waveform, | |
use_sample_rate=use_sample_rate, | |
waveform_transforms=waveform_transforms, | |
) | |
else: | |
raise ValueError(f"Invalid path: {path}") | |
return features_or_waveform | |
def _get_kaldi_fbank( | |
waveform: np.ndarray, sample_rate: int, n_bins=80 | |
) -> Optional[np.ndarray]: | |
"""Get mel-filter bank features via PyKaldi.""" | |
try: | |
from kaldi.feat.fbank import Fbank, FbankOptions | |
from kaldi.feat.mel import MelBanksOptions | |
from kaldi.feat.window import FrameExtractionOptions | |
from kaldi.matrix import Vector | |
mel_opts = MelBanksOptions() | |
mel_opts.num_bins = n_bins | |
frame_opts = FrameExtractionOptions() | |
frame_opts.samp_freq = sample_rate | |
opts = FbankOptions() | |
opts.mel_opts = mel_opts | |
opts.frame_opts = frame_opts | |
fbank = Fbank(opts=opts) | |
features = fbank.compute(Vector(waveform.squeeze()), 1.0).numpy() | |
return features | |
except ImportError: | |
return None | |
def _get_torchaudio_fbank( | |
waveform: np.ndarray, sample_rate, n_bins=80 | |
) -> Optional[np.ndarray]: | |
"""Get mel-filter bank features via TorchAudio.""" | |
try: | |
import torchaudio.compliance.kaldi as ta_kaldi | |
waveform = torch.from_numpy(waveform) | |
features = ta_kaldi.fbank( | |
waveform, num_mel_bins=n_bins, sample_frequency=sample_rate | |
) | |
return features.numpy() | |
except ImportError: | |
return None | |
def get_fbank( | |
path_or_fp: Union[str, BinaryIO], n_bins=80, waveform_transforms=None | |
) -> np.ndarray: | |
"""Get mel-filter bank features via PyKaldi or TorchAudio. Prefer PyKaldi | |
(faster CPP implementation) to TorchAudio (Python implementation). Note that | |
Kaldi/TorchAudio requires 16-bit signed integers as inputs and hence the | |
waveform should not be normalized.""" | |
waveform, sample_rate = get_waveform( | |
path_or_fp, normalization=False, waveform_transforms=waveform_transforms | |
) | |
features = _get_kaldi_fbank(waveform, sample_rate, n_bins) | |
if features is None: | |
features = _get_torchaudio_fbank(waveform, sample_rate, n_bins) | |
if features is None: | |
raise ImportError( | |
"Please install pyKaldi or torchaudio to enable " | |
"online filterbank feature extraction" | |
) | |
return features | |
def is_npy_data(data: bytes) -> bool: | |
return data[0] == 147 and data[1] == 78 | |
def is_sf_audio_data(data: bytes) -> bool: | |
is_wav = data[0] == 82 and data[1] == 73 and data[2] == 70 | |
is_flac = data[0] == 102 and data[1] == 76 and data[2] == 97 | |
is_ogg = data[0] == 79 and data[1] == 103 and data[2] == 103 | |
return is_wav or is_flac or is_ogg | |
def mmap_read(path: str, offset: int, length: int) -> bytes: | |
with open(path, "rb") as f: | |
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mmap_o: | |
data = mmap_o[offset : offset + length] | |
return data | |
def read_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes: | |
return mmap_read(zip_path, offset, length) | |
def parse_path(path: str) -> Tuple[str, List[int]]: | |
"""Parse data path which is either a path to | |
1. a .npy/.wav/.flac/.ogg file | |
2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]" | |
Args: | |
path (str): the data path to parse | |
Returns: | |
file_path (str): the file path | |
slice_ptr (list of int): empty in case 1; | |
byte offset and length for the slice in case 2 | |
""" | |
if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: | |
_path, slice_ptr = path, [] | |
else: | |
_path, *slice_ptr = path.split(":") | |
if not Path(_path).is_file(): | |
raise FileNotFoundError(f"File not found: {_path}") | |
assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}" | |
slice_ptr = [int(i) for i in slice_ptr] | |
return _path, slice_ptr | |
def get_window(window_fn: callable, n_fft: int, win_length: int) -> torch.Tensor: | |
padding = n_fft - win_length | |
assert padding >= 0 | |
return F.pad(window_fn(win_length), (padding // 2, padding - padding // 2)) | |
def get_fourier_basis(n_fft: int) -> torch.Tensor: | |
basis = np.fft.fft(np.eye(n_fft)) | |
basis = np.vstack( | |
[np.real(basis[: n_fft // 2 + 1, :]), np.imag(basis[: n_fft // 2 + 1, :])] | |
) | |
return torch.from_numpy(basis).float() | |
def get_mel_filters( | |
sample_rate: int, n_fft: int, n_mels: int, f_min: float, f_max: float | |
) -> torch.Tensor: | |
try: | |
import librosa | |
except ImportError: | |
raise ImportError("Please install librosa: pip install librosa") | |
basis = librosa.filters.mel(sample_rate, n_fft, n_mels, f_min, f_max) | |
return torch.from_numpy(basis).float() | |
class TTSSpectrogram(torch.nn.Module): | |
def __init__( | |
self, | |
n_fft: int, | |
win_length: int, | |
hop_length: int, | |
window_fn: callable = torch.hann_window, | |
return_phase: bool = False, | |
) -> None: | |
super(TTSSpectrogram, self).__init__() | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.return_phase = return_phase | |
basis = get_fourier_basis(n_fft).unsqueeze(1) | |
basis *= get_window(window_fn, n_fft, win_length) | |
self.register_buffer("basis", basis) | |
def forward( | |
self, waveform: torch.Tensor | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | |
padding = (self.n_fft // 2, self.n_fft // 2) | |
x = F.pad(waveform.unsqueeze(1), padding, mode="reflect") | |
x = F.conv1d(x, self.basis, stride=self.hop_length) | |
real_part = x[:, : self.n_fft // 2 + 1, :] | |
imag_part = x[:, self.n_fft // 2 + 1 :, :] | |
magnitude = torch.sqrt(real_part**2 + imag_part**2) | |
if self.return_phase: | |
phase = torch.atan2(imag_part, real_part) | |
return magnitude, phase | |
return magnitude | |
class TTSMelScale(torch.nn.Module): | |
def __init__( | |
self, n_mels: int, sample_rate: int, f_min: float, f_max: float, n_stft: int | |
) -> None: | |
super(TTSMelScale, self).__init__() | |
basis = get_mel_filters(sample_rate, (n_stft - 1) * 2, n_mels, f_min, f_max) | |
self.register_buffer("basis", basis) | |
def forward(self, specgram: torch.Tensor) -> torch.Tensor: | |
return torch.matmul(self.basis, specgram) | |