Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch.nn as nn | |
class LSTMCellWithZoneOut(nn.Module): | |
""" | |
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations | |
https://arxiv.org/abs/1606.01305 | |
""" | |
def __init__( | |
self, prob: float, input_size: int, hidden_size: int, bias: bool = True | |
): | |
super(LSTMCellWithZoneOut, self).__init__() | |
self.lstm_cell = nn.LSTMCell(input_size, hidden_size, bias=bias) | |
self.prob = prob | |
if prob > 1.0 or prob < 0.0: | |
raise ValueError( | |
"zoneout probability must be in the range from " "0.0 to 1.0." | |
) | |
def zoneout(self, h, next_h, prob): | |
if isinstance(h, tuple): | |
return tuple([self.zoneout(h[i], next_h[i], prob) for i in range(len(h))]) | |
if self.training: | |
mask = h.new_zeros(*h.size()).bernoulli_(prob) | |
return mask * h + (1 - mask) * next_h | |
return prob * h + (1 - prob) * next_h | |
def forward(self, x, h): | |
return self.zoneout(h, self.lstm_cell(x, h), self.prob) | |