TomatoCocotree
上传
6a62ffb
raw
history blame
1.22 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn as nn
class LSTMCellWithZoneOut(nn.Module):
"""
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
https://arxiv.org/abs/1606.01305
"""
def __init__(
self, prob: float, input_size: int, hidden_size: int, bias: bool = True
):
super(LSTMCellWithZoneOut, self).__init__()
self.lstm_cell = nn.LSTMCell(input_size, hidden_size, bias=bias)
self.prob = prob
if prob > 1.0 or prob < 0.0:
raise ValueError(
"zoneout probability must be in the range from " "0.0 to 1.0."
)
def zoneout(self, h, next_h, prob):
if isinstance(h, tuple):
return tuple([self.zoneout(h[i], next_h[i], prob) for i in range(len(h))])
if self.training:
mask = h.new_zeros(*h.size()).bernoulli_(prob)
return mask * h + (1 - mask) * next_h
return prob * h + (1 - prob) * next_h
def forward(self, x, h):
return self.zoneout(h, self.lstm_cell(x, h), self.prob)