File size: 22,609 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import json
import logging
import math
from argparse import Namespace
from pathlib import Path
from typing import List

import torch
import torch.nn as nn

from fairseq import utils
from fairseq.data import Dictionary
from fairseq.data.audio.data_cfg import MultitaskConfig, S2SDataConfig
from fairseq.data.audio.speech_to_speech_dataset import SpeechToSpeechDatasetCreator
from fairseq.data.audio.speech_to_text_dataset import (
    SpeechToTextDataset,
    TextTargetMultitaskData,
)
from fairseq.tasks import LegacyFairseqTask, register_task
from fairseq.tasks.speech_to_text import DummyMultiTask
from fairseq.tasks.text_to_speech import batch_mel_cepstral_distortion

logger = logging.getLogger(__name__)


class StackUnitSequenceGenerator(nn.Module):
    def __init__(self, tgt_dict, vocab_size):
        super().__init__()
        self.pad = tgt_dict.pad()
        self.eos = tgt_dict.eos()
        self.unk = tgt_dict.unk()
        self.offset = len(tgt_dict) - vocab_size
        self.vocab_size = vocab_size

    def pack_units(self, input: torch.Tensor, n_frames_per_step) -> torch.Tensor:
        if n_frames_per_step <= 1:
            return input

        bsz, _, n = input.shape
        assert n == n_frames_per_step

        scale = [
            pow(self.vocab_size, n_frames_per_step - 1 - i)
            for i in range(n_frames_per_step)
        ]
        scale = torch.LongTensor(scale).squeeze(0).to(input.device)
        mask = input >= self.offset
        res = ((input - self.offset) * scale * mask).sum(dim=2) + self.offset
        return res

    @torch.no_grad()
    def generate(self, models, sample, **kwargs):
        # currently only support viterbi search for stacked units
        model = models[0]
        model.eval()

        max_len = model.max_decoder_positions()
        # TODO: incorporate max_len_a and max_len_b

        src_tokens = sample["net_input"]["src_tokens"]
        src_lengths = sample["net_input"]["src_lengths"]
        bsz, src_len, _ = src_tokens.size()
        n_frames_per_step = model.decoder.n_frames_per_step

        # initialize
        encoder_out = model.forward_encoder(
            src_tokens, src_lengths, speaker=sample["speaker"]
        )
        incremental_state = {}
        pred_out, attn, scores = [], [], []
        finished = src_tokens.new_zeros((bsz,)).bool()

        prev_output_tokens = src_lengths.new_zeros((bsz, 1)).long().fill_(self.eos)
        for _ in range(max_len):
            cur_out, cur_extra = model.forward_decoder(
                prev_output_tokens,
                encoder_out=encoder_out,
                incremental_state=incremental_state,
            )

            lprobs = model.get_normalized_probs([cur_out], log_probs=True)
            # never select pad, unk
            lprobs[:, :, self.pad] = -math.inf
            lprobs[:, :, self.unk] = -math.inf

            cur_pred_lprob, cur_pred_out = torch.max(lprobs, dim=2)
            scores.append(cur_pred_lprob)
            pred_out.append(cur_pred_out)

            prev_output_tokens = torch.cat(
                (
                    prev_output_tokens,
                    self.pack_units(
                        cur_pred_out.view(bsz, 1, n_frames_per_step), n_frames_per_step
                    ),
                ),
                dim=1,
            )

            attn.append(cur_extra["attn"][0])

            cur_finished = torch.any(cur_pred_out.squeeze(1) == self.eos, dim=1)
            finished = finished | cur_finished
            if finished.sum().item() == bsz:
                break

        pred_out = torch.cat(pred_out, dim=1).view(bsz, -1)
        attn = torch.cat(attn, dim=2)
        alignment = attn.max(dim=1)[1]
        attn = attn.repeat_interleave(n_frames_per_step, dim=2)
        alignment = alignment.repeat_interleave(n_frames_per_step, dim=1)
        scores = torch.cat(scores, dim=1)
        eos_idx = (pred_out == self.eos).nonzero(as_tuple=True)
        out_lens = src_lengths.new_zeros((bsz,)).long().fill_(max_len)
        for b, l in zip(eos_idx[0], eos_idx[1]):
            out_lens[b] = min(l, out_lens[b])

        hypos = [
            [
                {
                    "tokens": pred_out[b, :out_len],
                    "attn": attn[b, :, :out_len],
                    "alignment": alignment[b, :out_len],
                    "positional_scores": scores[b, :out_len],
                    "score": utils.item(scores[b, :out_len].sum().data),
                }
            ]
            for b, out_len in zip(range(bsz), out_lens)
        ]

        return hypos


@register_task("speech_to_speech")
class SpeechToSpeechTask(LegacyFairseqTask):
    @classmethod
    def add_args(cls, parser):
        parser.add_argument("data", help="manifest root path")
        parser.add_argument(
            "--config-yaml",
            type=str,
            default="config.yaml",
            help="Configuration YAML filename (under manifest root)",
        )
        parser.add_argument(
            "--multitask-config-yaml",
            type=str,
            default=None,
            help="Configuration YAML filename for the multitasks (under manifest root)",
        )
        parser.add_argument(
            "--max-source-positions",
            default=6000,
            type=int,
            metavar="N",
            help="max number of tokens in the source sequence",
        )
        parser.add_argument(
            "--max-target-positions",
            default=1024,
            type=int,
            metavar="N",
            help="max number of tokens in the target sequence",
        )
        parser.add_argument(
            "--target-is-code",
            action="store_true",
            help="set if target is discrete unit instead of spectrogram",
        )
        parser.add_argument(
            "--target-code-size", type=int, default=None, help="# discrete units"
        )
        parser.add_argument(
            "--n-frames-per-step",
            type=int,
            default=1,
            help="# stacked frames, use 0 for reduced discrete unit sequence",
        )
        parser.add_argument("--eval-inference", action="store_true")
        parser.add_argument(
            "--eval-args",
            type=str,
            default="{}",
            help='generation args for speech-to-unit model , e.g., \'{"beam": 5, "max_len_a": 1}\', as JSON string',
        )
        parser.add_argument("--eos-prob-threshold", type=float, default=0.5)
        parser.add_argument(
            "--mcd-normalize-type",
            type=str,
            default="targ",
            choices=["targ", "pred", "path"],
        )
        parser.add_argument(
            "--vocoder",
            type=str,
            default="griffin_lim",
            choices=["griffin_lim", "hifigan", "code_hifigan"],
        )
        parser.add_argument("--spec-bwd-max-iter", type=int, default=8)
        parser.add_argument(
            "--infer-target-lang",
            type=str,
            default="",
            help="target language for inference",
        )

    def __init__(self, args, tgt_dict, infer_tgt_lang_id=None):
        super().__init__(args)
        self.tgt_dict = tgt_dict
        self.data_cfg = S2SDataConfig(Path(args.data) / args.config_yaml)

        self.multitask_tasks = {}
        self.tgt_dict_mt = None
        self.eos_token_mt = None
        if getattr(args, "multitask_config_yaml", None) is not None:
            multitask_cfg = MultitaskConfig(
                Path(args.data) / args.multitask_config_yaml
            )
            first_pass_task_idx = multitask_cfg.first_pass_decoder_task_index
            for i, (task_name, task_config) in enumerate(
                multitask_cfg.get_all_tasks().items()
            ):
                task_obj = DummyMultiTask(
                    task_config,
                    task_config.tgt_dict,
                    first_pass=i == first_pass_task_idx,
                )
                self.multitask_tasks[task_name] = task_obj
                if task_obj.is_first_pass_decoder:
                    self.tgt_dict_mt = task_obj.target_dictionary
                    if task_config.prepend_bos_and_append_tgt_lang_tag:
                        self.eos_token_mt = task_config.eos_token
                        assert not isinstance(self.eos_token_mt, List)

                        if not self.eos_token_mt:
                            raise Warning(
                                "Please provide eos_token in --multitask-config-yaml to replace eos in sequence generator"
                            )

        self._infer_tgt_lang_id = infer_tgt_lang_id

    @classmethod
    def setup_task(cls, args, **kwargs):
        data_cfg = data_cfg = S2SDataConfig(Path(args.data) / args.config_yaml)
        tgt_dict = None
        infer_tgt_lang_id = None
        if args.target_is_code:
            if data_cfg.prepend_tgt_lang_tag_as_bos:
                # dictionary with language tags
                dict_path = Path(args.data) / data_cfg.vocab_filename
                if not dict_path.is_file():
                    raise FileNotFoundError(
                        f"Dict has to be provided when setting prepend_tgt_lang_tag_as_bos: true, but dict not found: {dict_path}"
                    )
                tgt_dict = Dictionary.load(dict_path.as_posix())

                # target langauge for inference
                if args.infer_target_lang != "":
                    tgt_lang_tag = SpeechToTextDataset.LANG_TAG_TEMPLATE.format(
                        args.infer_target_lang
                    )
                    infer_tgt_lang_id = tgt_dict.index(tgt_lang_tag)
                    assert infer_tgt_lang_id != tgt_dict.unk()
            else:
                assert args.target_code_size is not None

                tgt_dict = Dictionary()
                for i in range(args.target_code_size):
                    tgt_dict.add_symbol(str(i))
            logger.info(f"dictionary size: " f"{len(tgt_dict):,}")

        if getattr(args, "train_subset", None) is not None:
            if not all(s.startswith("train") for s in args.train_subset.split(",")):
                raise ValueError('Train splits should be named like "train*".')

        assert args.n_frames_per_step >= 1
        assert (
            not args.eval_inference
            or (args.target_is_code and args.vocoder == "code_hifigan")
            or (not args.target_is_code and args.vocoder != "code_hifigan")
        )

        return cls(args, tgt_dict, infer_tgt_lang_id=infer_tgt_lang_id)

    def build_criterion(self, args):
        from fairseq import criterions

        if len(self.multitask_tasks) > 0:
            if self.args.target_is_code and not args._name.startswith("speech_to_unit"):
                raise ValueError(
                    "set --criterion speech_to_unit for speech-to-unit loss with multitask"
                )
            elif not self.args.target_is_code and not args._name.startswith(
                "speech_to_spectrogram"
            ):
                raise ValueError(
                    "set --criterion speech_to_spectrogram for speech-to-spectrogram loss with multitask"
                )

        return criterions.build_criterion(args, self)

    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        self.datasets[split] = SpeechToSpeechDatasetCreator.from_tsv(
            root=self.args.data,
            data_cfg=self.data_cfg,
            splits=split,
            is_train_split=split.startswith("train"),
            epoch=epoch,
            seed=self.args.seed,
            target_is_code=self.args.target_is_code,
            tgt_dict=self.target_dictionary,
            n_frames_per_step=self.args.n_frames_per_step,
            multitask=self.multitask_tasks,
        )

    @property
    def target_dictionary(self):
        return self.tgt_dict

    @property
    def target_dictionary_mt(self):
        return self.tgt_dict_mt

    @property
    def source_dictionary(self):
        return None

    def max_positions(self):
        return self.args.max_source_positions, self.args.max_target_positions

    def build_model(self, args, from_checkpoint=False):
        args.input_feat_per_channel = self.data_cfg.input_feat_per_channel
        args.input_channels = self.data_cfg.input_transformed_channels
        args.target_speaker_embed = self.data_cfg.target_speaker_embed is not None
        args.n_frames_per_step = self.args.n_frames_per_step

        model = super().build_model(args, from_checkpoint)

        if len(self.multitask_tasks) > 0:
            from fairseq.models.speech_to_speech.s2s_transformer import (
                S2STransformerMultitaskModelBase,
            )

            assert isinstance(model, S2STransformerMultitaskModelBase)

        if self.args.eval_inference:
            self.eval_gen_args = json.loads(self.args.eval_args)
            self.generator = self.build_generator(
                [model], Namespace(**self.eval_gen_args)
            )

        return model

    def build_generator_dual_decoder(
        self,
        models,
        args,
        extra_gen_cls_kwargs=None,
    ):
        from examples.speech_to_speech.unity.sequence_generator_multi_decoder import (
            MultiDecoderSequenceGenerator,
        )

        return MultiDecoderSequenceGenerator(
            models,
            self.target_dictionary,
            self.target_dictionary_mt,
            beam_size=max(1, getattr(args, "beam", 1)),
            beam_size_mt=max(1, getattr(args, "beam_mt", 1)),
            max_len_a=getattr(args, "max_len_a", 0),
            max_len_b=getattr(args, "max_len_b", 200),
            max_len_a_mt=getattr(args, "max_len_a_mt", 0),
            max_len_b_mt=getattr(args, "max_len_b_mt", 200),
            min_len=getattr(args, "min_len", 1),
            normalize_scores=(not getattr(args, "unnormalized", False)),
            len_penalty=getattr(args, "lenpen", 1),
            unk_penalty=getattr(args, "unkpen", 0),
            temperature=getattr(args, "temperature", 1.0),
            match_source_len=getattr(args, "match_source_len", False),
            no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
            **extra_gen_cls_kwargs,
        )

    def build_generator(
        self,
        models,
        args,
        seq_gen_cls=None,
        extra_gen_cls_kwargs=None,
    ):

        if not self.args.target_is_code or self.args.eval_inference:
            from fairseq.models.text_to_speech.vocoder import get_vocoder

            self.vocoder = get_vocoder(self.args, self.data_cfg)
            self.vocoder = (
                self.vocoder.cuda()
                if torch.cuda.is_available() and not self.args.cpu
                else self.vocoder.cpu()
            )

        has_dual_decoder = getattr(models[0], "mt_task_name", None) is not None

        if self.args.target_is_code:
            if self.args.n_frames_per_step == 1:
                if has_dual_decoder:
                    seq_generator = self.build_generator_dual_decoder(
                        models,
                        args,
                        extra_gen_cls_kwargs=extra_gen_cls_kwargs,
                    )
                else:
                    seq_generator = super().build_generator(
                        models,
                        args,
                        seq_gen_cls=None,
                        extra_gen_cls_kwargs=extra_gen_cls_kwargs,
                    )
            else:
                assert (
                    getattr(args, "beam", 1) == 1 and getattr(args, "nbest", 1) == 1
                ), "only support viterbi search for stacked units"
                seq_generator = StackUnitSequenceGenerator(
                    self.tgt_dict,
                    self.args.target_code_size,
                )
        else:
            if has_dual_decoder:
                if getattr(args, "teacher_forcing", False):
                    raise NotImplementedError
                else:
                    from fairseq.speech_generator import MultiDecoderSpeechGenerator

                    generator = MultiDecoderSpeechGenerator

                lang_token_ids_aux = {
                    i
                    for s, i in self.tgt_dict_mt.indices.items()
                    if TextTargetMultitaskData.is_lang_tag(s)
                }

                if extra_gen_cls_kwargs is None:
                    extra_gen_cls_kwargs = {}
                extra_gen_cls_kwargs[
                    "symbols_to_strip_from_output"
                ] = lang_token_ids_aux

                eos_id_mt = (
                    self.tgt_dict_mt.index(self.eos_token_mt)
                    if self.eos_token_mt
                    else None
                )
                assert eos_id_mt != self.tgt_dict_mt.unk()
                extra_gen_cls_kwargs["eos_mt"] = eos_id_mt

                seq_generator = generator(
                    models,
                    args,
                    self.vocoder,
                    self.data_cfg,
                    self.target_dictionary_mt,
                    max_iter=self.args.max_target_positions,
                    eos_prob_threshold=self.args.eos_prob_threshold,
                    **extra_gen_cls_kwargs,
                )
            else:
                if getattr(args, "teacher_forcing", False):
                    from fairseq.speech_generator import (
                        TeacherForcingAutoRegressiveSpeechGenerator,
                    )

                    generator = TeacherForcingAutoRegressiveSpeechGenerator
                    logger.info("Teacher forcing mode for generation")
                else:
                    from fairseq.speech_generator import AutoRegressiveSpeechGenerator

                    generator = AutoRegressiveSpeechGenerator

                seq_generator = generator(
                    models[0],
                    self.vocoder,
                    self.data_cfg,
                    max_iter=self.args.max_target_positions,
                    eos_prob_threshold=self.args.eos_prob_threshold,
                )

        return seq_generator

    def train_step(
        self, sample, model, criterion, optimizer, update_num, ignore_grad=False
    ):
        for task_name, task_obj in self.multitask_tasks.items():
            criterion.set_multitask_loss_weight(
                task_name, task_obj.args.get_loss_weight(update_num)
            )
            if task_name in model.multitask_decoders:
                model.multitask_decoders[task_name].train()

        loss, sample_size, logging_output = super().train_step(
            sample, model, criterion, optimizer, update_num, ignore_grad
        )
        return loss, sample_size, logging_output

    def valid_step(self, sample, model, criterion):
        for task_name in self.multitask_tasks.keys():
            if task_name in model.multitask_decoders:
                model.multitask_decoders[task_name].eval()
        loss, sample_size, logging_output = super().valid_step(sample, model, criterion)

        if self.args.eval_inference:
            hypos, inference_losses = self.valid_step_with_inference(
                sample, model, self.generator
            )
            for k, v in inference_losses.items():
                assert k not in logging_output
                logging_output[k] = v

        return loss, sample_size, logging_output

    def valid_step_with_inference(self, sample, model, generator):
        if self.args.target_is_code:
            hypos = generator.generate([model], sample)
            tgt_lens = (
                sample["target_lengths"] - 1
            ) * self.args.n_frames_per_step  # strip <eos>
            for b, (f, l) in enumerate(zip(sample["target"], tgt_lens)):
                hypos[b][0]["targ_waveform"] = self.vocoder(
                    {"code": f[:l] - 4},  # remove <bos>, <pad>, <eos>, <unk>
                    dur_prediction=self.eval_gen_args.get("dur_prediction", False),
                )
                if len(hypos[b][0]["tokens"]) > 0:
                    hypos[b][0]["waveform"] = self.vocoder(
                        {"code": hypos[b][0]["tokens"] - 4},
                        dur_prediction=self.eval_gen_args.get("dur_prediction", False),
                    )
                else:
                    hypos[b][0]["waveform"] = torch.flip(
                        hypos[b][0]["targ_waveform"], dims=[0]
                    )
        else:
            hypos = [
                [hypo] for hypo in generator.generate(model, sample, has_targ=True)
            ]

        losses = {
            "mcd_loss": 0.0,
            "targ_frames": 0.0,
            "pred_frames": 0.0,
            "path_frames": 0.0,
            "nins": 0.0,
            "ndel": 0.0,
        }
        rets = batch_mel_cepstral_distortion(
            [hypo[0]["targ_waveform"] for hypo in hypos],
            [hypo[0]["waveform"] for hypo in hypos],
            self.data_cfg.output_sample_rate,
            normalize_type=None,
        )
        for d, extra in rets:
            pathmap = extra[-1]
            losses["mcd_loss"] += d.item()
            losses["targ_frames"] += pathmap.size(0)
            losses["pred_frames"] += pathmap.size(1)
            losses["path_frames"] += pathmap.sum().item()
            losses["nins"] += (pathmap.sum(dim=1) - 1).sum().item()
            losses["ndel"] += (pathmap.sum(dim=0) - 1).sum().item()
        losses["norm_frames"] = losses[
            f"{getattr(self.args, 'mcd_normalize_type', 'targ')}_frames"
        ]

        return hypos, losses

    def inference_step(
        self, generator, models, sample, prefix_tokens=None, constraints=None
    ):
        with torch.no_grad():
            if self._infer_tgt_lang_id is not None:
                return generator.generate(
                    models,
                    sample,
                    prefix_tokens=prefix_tokens,
                    constraints=constraints,
                    bos_token=self._infer_tgt_lang_id,
                )
            else:
                return super().inference_step(
                    generator,
                    models,
                    sample,
                    prefix_tokens=prefix_tokens,
                    constraints=constraints,
                )