Spaces:
Runtime error
Runtime error
File size: 9,201 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import contextlib
from dataclasses import dataclass, field
from typing import Optional
from omegaconf import MISSING, II, open_dict, OmegaConf
import numpy as np
from fairseq.data import (
ConcatSentencesDataset,
Dictionary,
IdDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
OffsetTokensDataset,
PrependTokenDataset,
RawLabelDataset,
RightPadDataset,
RollDataset,
SortDataset,
StripTokenDataset,
data_utils,
)
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.tasks import FairseqDataclass, FairseqTask, register_task
from fairseq.dataclass import ChoiceEnum
logger = logging.getLogger(__name__)
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"])
@dataclass
class SentencePredictionConfig(FairseqDataclass):
data: str = field(default=MISSING, metadata={"help": "path to data directory"})
num_classes: int = field(
default=-1,
metadata={"help": "number of classes or regression targets"},
)
init_token: Optional[int] = field(
default=None,
metadata={"help": "add token at the beginning of each batch item"},
)
separator_token: Optional[int] = field(
default=None,
metadata={"help": "add separator token between inputs"},
)
no_shuffle: bool = field(
default=False,
)
shorten_method: SHORTEN_METHOD_CHOICES = field(
default="none",
metadata={
"help": "if not none, shorten sequences that exceed tokens_per_sample"
},
)
shorten_data_split_list: str = field(
default="",
metadata={
"help": "comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)'
},
)
add_prev_output_tokens: bool = field(
default=False,
metadata={
"help": "add prev_output_tokens to sample, used for encoder-decoder arch"
},
)
max_positions: int = field(
default=512,
metadata={"help": "max tokens per example"},
)
regression_target: bool = II("criterion.regression_target")
classification_head_name: str = II("criterion.classification_head_name")
seed: int = II("common.seed")
@register_task("sentence_prediction", dataclass=SentencePredictionConfig)
class SentencePredictionTask(FairseqTask):
"""
Sentence (or sentence pair) prediction (classification or regression) task.
Args:
dictionary (Dictionary): the dictionary for the input of the task
"""
def __init__(self, cfg, data_dictionary, label_dictionary):
super().__init__(cfg)
self.dictionary = data_dictionary
self._label_dictionary = label_dictionary
@classmethod
def load_dictionary(cls, filename):
"""Load the dictionary from the filename
Args:
filename (str): the filename
"""
dictionary = Dictionary.load(filename)
dictionary.add_symbol("<mask>")
return dictionary
@classmethod
def setup_task(cls, cfg, **kwargs):
assert cfg.num_classes > 0, "Must set task.num_classes"
# load data dictionary
data_dict = cls.load_dictionary(
os.path.join(cfg.data, "input0", "dict.txt"),
)
logger.info("[input] dictionary: {} types".format(len(data_dict)))
# load label dictionary
if not cfg.regression_target:
label_dict = cls.load_dictionary(
os.path.join(cfg.data, "label", "dict.txt"),
)
logger.info("[label] dictionary: {} types".format(len(label_dict)))
else:
label_dict = data_dict
return cls(cfg, data_dict, label_dict)
def load_dataset(self, split, combine=False, **kwargs):
"""Load a given dataset split (e.g., train, valid, test)."""
def get_path(key, split):
return os.path.join(self.cfg.data, key, split)
def make_dataset(key, dictionary):
split_path = get_path(key, split)
try:
dataset = data_utils.load_indexed_dataset(
split_path,
dictionary,
combine=combine,
)
except Exception as e:
if "StorageException: [404] Path not found" in str(e):
logger.warning(f"dataset {e} not found")
dataset = None
else:
raise e
return dataset
input0 = make_dataset("input0", self.source_dictionary)
assert input0 is not None, "could not find dataset: {}".format(
get_path("input0", split)
)
input1 = make_dataset("input1", self.source_dictionary)
if self.cfg.init_token is not None:
input0 = PrependTokenDataset(input0, self.cfg.init_token)
if input1 is None:
src_tokens = input0
else:
if self.cfg.separator_token is not None:
input1 = PrependTokenDataset(input1, self.cfg.separator_token)
src_tokens = ConcatSentencesDataset(input0, input1)
with data_utils.numpy_seed(self.cfg.seed):
shuffle = np.random.permutation(len(src_tokens))
src_tokens = maybe_shorten_dataset(
src_tokens,
split,
self.cfg.shorten_data_split_list,
self.cfg.shorten_method,
self.max_positions(),
self.cfg.seed,
)
dataset = {
"id": IdDataset(),
"net_input": {
"src_tokens": RightPadDataset(
src_tokens,
pad_idx=self.source_dictionary.pad(),
),
"src_lengths": NumelDataset(src_tokens, reduce=False),
},
"nsentences": NumSamplesDataset(),
"ntokens": NumelDataset(src_tokens, reduce=True),
}
if self.cfg.add_prev_output_tokens:
prev_tokens_dataset = RightPadDataset(
RollDataset(src_tokens, 1),
pad_idx=self.dictionary.pad(),
)
dataset["net_input"].update(
prev_output_tokens=prev_tokens_dataset,
)
if not self.cfg.regression_target:
label_dataset = make_dataset("label", self.label_dictionary)
if label_dataset is not None:
dataset.update(
target=OffsetTokensDataset(
StripTokenDataset(
label_dataset,
id_to_strip=self.label_dictionary.eos(),
),
offset=-self.label_dictionary.nspecial,
)
)
else:
label_path = "{0}.label".format(get_path("label", split))
if os.path.exists(label_path):
def parse_regression_target(i, line):
values = line.split()
assert (
len(values) == self.cfg.num_classes
), f'expected num_classes={self.cfg.num_classes} regression target values on line {i}, found: "{line}"'
return [float(x) for x in values]
with open(label_path) as h:
dataset.update(
target=RawLabelDataset(
[
parse_regression_target(i, line.strip())
for i, line in enumerate(h.readlines())
]
)
)
nested_dataset = NestedDictionaryDataset(
dataset,
sizes=[src_tokens.sizes],
)
if self.cfg.no_shuffle:
dataset = nested_dataset
else:
dataset = SortDataset(
nested_dataset,
# shuffle
sort_order=[shuffle],
)
logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset)))
self.datasets[split] = dataset
return self.datasets[split]
def build_model(self, cfg, from_checkpoint=False):
from fairseq import models
with open_dict(cfg) if OmegaConf.is_config(cfg) else contextlib.ExitStack():
cfg.max_positions = self.cfg.max_positions
model = models.build_model(cfg, self, from_checkpoint)
model.register_classification_head(
self.cfg.classification_head_name,
num_classes=self.cfg.num_classes,
)
return model
def max_positions(self):
return self.cfg.max_positions
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
@property
def label_dictionary(self):
return self._label_dictionary
|