Spaces:
Runtime error
Runtime error
File size: 20,415 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
from collections import OrderedDict
from fairseq import utils
from fairseq.data import (
BacktranslationDataset,
IndexedCachedDataset,
IndexedDataset,
IndexedRawTextDataset,
LanguagePairDataset,
NoisingDataset,
RoundRobinZipDatasets,
data_utils,
indexed_dataset,
)
from fairseq.models import FairseqMultiModel
from fairseq.sequence_generator import SequenceGenerator
from . import register_task
from .multilingual_translation import MultilingualTranslationTask
logger = logging.getLogger(__name__)
def _get_bt_dataset_key(lang_pair):
return "bt:" + lang_pair
def _get_denoising_dataset_key(lang_pair):
return "denoising:" + lang_pair
# ported from UnsupervisedMT
def parse_lambda_config(x):
"""
Parse the configuration of lambda coefficient (for scheduling).
x = "3" # lambda will be a constant equal to x
x = "0:1,1000:0" # lambda will start from 1 and linearly decrease
# to 0 during the first 1000 iterations
x = "0:0,1000:0,2000:1" # lambda will be equal to 0 for the first 1000
# iterations, then will linearly increase to 1 until iteration 2000
"""
split = x.split(",")
if len(split) == 1:
return float(x), None
else:
split = [s.split(os.pathsep) for s in split]
assert all(len(s) == 2 for s in split)
assert all(k.isdigit() for k, _ in split)
assert all(
int(split[i][0]) < int(split[i + 1][0]) for i in range(len(split) - 1)
)
return float(split[0][1]), [(int(k), float(v)) for k, v in split]
@register_task("semisupervised_translation")
class SemisupervisedTranslationTask(MultilingualTranslationTask):
"""A task for training multiple translation models simultaneously.
We iterate round-robin over batches from multiple language pairs, ordered
according to the `--lang-pairs` argument.
The training loop is roughly:
for i in range(len(epoch)):
for lang_pair in args.lang_pairs:
batch = next_batch_for_lang_pair(lang_pair)
loss = criterion(model_for_lang_pair(lang_pair), batch)
loss.backward()
optimizer.step()
In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset
(e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that
implements the `FairseqMultiModel` interface.
During inference it is required to specify a single `--source-lang` and
`--target-lang`, instead of `--lang-pairs`.
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
MultilingualTranslationTask.add_args(parser)
parser.add_argument('--lambda-parallel-config', default="1.0", type=str, metavar='CONFIG',
help='cross-entropy reconstruction coefficient (parallel data). '
'use fixed weight during training if set to floating point number. '
'use piecewise linear function over number of updates to schedule the '
'weight with the format: w0:step0,w1:step1,...')
parser.add_argument('--lambda-denoising-config', default="0.0", type=str, metavar='CONFIG',
help='Cross-entropy reconstruction coefficient (denoising autoencoding)'
'use fixed weight during training if set to floating point number. '
'use piecewise linear function over number of updates to schedule the '
'weight with the format: w0:step0,w1:step1,...')
parser.add_argument('--lambda-otf-bt-config', default="0.0", type=str, metavar='CONFIG',
help='cross-entropy reconstruction coefficient (on-the-fly back-translation parallel data)'
'use fixed weight during training if set to floating point number. '
'use piecewise linear function over number of updates to schedule the '
'weight with the format: w0:step0,w1:step1,...')
parser.add_argument('--bt-max-len-a', default=1.1, type=float, metavar='N',
help='generate back-translated sequences of maximum length ax + b, where x is the '
'source length')
parser.add_argument('--bt-max-len-b', default=10.0, type=float, metavar='N',
help='generate back-translated sequences of maximum length ax + b, where x is the '
'source length')
parser.add_argument('--bt-beam-size', default=1, type=int, metavar='N',
help='beam size used in beam search of online back-translation')
parser.add_argument('--max-word-shuffle-distance', default=3.0, type=float, metavar='N',
help='maximum word shuffle distance for denoising autoencoding data generation')
parser.add_argument('--word-dropout-prob', default=0.1, type=float, metavar='N',
help='word dropout probability for denoising autoencoding data generation')
parser.add_argument('--word-blanking-prob', default=0.2, type=float, metavar='N',
help='word blanking probability for denoising autoencoding data generation')
# fmt: on
def __init__(self, args, dicts, training):
super().__init__(args, dicts, training)
self.lambda_parallel, self.lambda_parallel_steps = parse_lambda_config(
args.lambda_parallel_config
)
self.lambda_otf_bt, self.lambda_otf_bt_steps = parse_lambda_config(
args.lambda_otf_bt_config
)
self.lambda_denoising, self.lambda_denoising_steps = parse_lambda_config(
args.lambda_denoising_config
)
if self.lambda_denoising > 0.0 or self.lambda_denoising_steps is not None:
denoising_lang_pairs = [
"%s-%s" % (tgt, tgt)
for tgt in {lang_pair.split("-")[1] for lang_pair in args.lang_pairs}
]
self.model_lang_pairs = self.model_lang_pairs + denoising_lang_pairs
self.backtranslate_datasets = {}
self.backtranslators = {}
@classmethod
def setup_task(cls, args, **kwargs):
dicts, training = MultilingualTranslationTask.prepare(args, **kwargs)
return cls(args, dicts, training)
def load_dataset(self, split, epoch=1, **kwargs):
"""Load a dataset split."""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
def split_exists(split, src, tgt, lang):
if src is not None:
filename = os.path.join(
data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)
)
else:
filename = os.path.join(
data_path, "{}.{}-None.{}".format(split, src, tgt)
)
return indexed_dataset.dataset_exists(filename, impl=self.args.dataset_impl)
def load_indexed_dataset(path, dictionary):
return data_utils.load_indexed_dataset(
path, dictionary, self.args.dataset_impl
)
# load parallel datasets
src_datasets, tgt_datasets = {}, {}
if (
self.lambda_parallel > 0.0
or self.lambda_parallel_steps is not None
or not split.startswith("train")
):
for lang_pair in self.lang_pairs:
src, tgt = lang_pair.split("-")
if split_exists(split, src, tgt, src):
prefix = os.path.join(
data_path, "{}.{}-{}.".format(split, src, tgt)
)
elif split_exists(split, tgt, src, src):
prefix = os.path.join(
data_path, "{}.{}-{}.".format(split, tgt, src)
)
else:
continue
src_datasets[lang_pair] = load_indexed_dataset(
prefix + src, self.dicts[src]
)
tgt_datasets[lang_pair] = load_indexed_dataset(
prefix + tgt, self.dicts[tgt]
)
logger.info(
"parallel-{} {} {} examples".format(
data_path, split, len(src_datasets[lang_pair])
)
)
if len(src_datasets) == 0:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, data_path)
)
# back translation datasets
backtranslate_datasets = {}
if (
self.lambda_otf_bt > 0.0 or self.lambda_otf_bt_steps is not None
) and split.startswith("train"):
for lang_pair in self.lang_pairs:
src, tgt = lang_pair.split("-")
if not split_exists(split, tgt, None, tgt):
raise FileNotFoundError(
"Dataset not found: backtranslation {} ({})".format(
split, data_path
)
)
filename = os.path.join(
data_path, "{}.{}-None.{}".format(split, tgt, tgt)
)
dataset = load_indexed_dataset(filename, self.dicts[tgt])
lang_pair_dataset_tgt = LanguagePairDataset(
dataset,
dataset.sizes,
self.dicts[tgt],
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
)
lang_pair_dataset = LanguagePairDataset(
dataset,
dataset.sizes,
src_dict=self.dicts[src],
tgt=dataset,
tgt_sizes=dataset.sizes,
tgt_dict=self.dicts[tgt],
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
)
backtranslate_datasets[lang_pair] = BacktranslationDataset(
tgt_dataset=self.alter_dataset_langtok(
lang_pair_dataset_tgt,
src_eos=self.dicts[tgt].eos(),
src_lang=tgt,
tgt_lang=src,
),
backtranslation_fn=self.backtranslators[lang_pair],
src_dict=self.dicts[src],
tgt_dict=self.dicts[tgt],
output_collater=self.alter_dataset_langtok(
lang_pair_dataset=lang_pair_dataset,
src_eos=self.dicts[src].eos(),
src_lang=src,
tgt_eos=self.dicts[tgt].eos(),
tgt_lang=tgt,
).collater,
)
logger.info(
"backtranslate-{}: {} {} {} examples".format(
tgt,
data_path,
split,
len(backtranslate_datasets[lang_pair]),
)
)
self.backtranslate_datasets[lang_pair] = backtranslate_datasets[
lang_pair
]
# denoising autoencoder
noising_datasets = {}
if (
self.lambda_denoising > 0.0 or self.lambda_denoising_steps is not None
) and split.startswith("train"):
for lang_pair in self.lang_pairs:
_, tgt = lang_pair.split("-")
if not split_exists(split, tgt, None, tgt):
continue
filename = os.path.join(
data_path, "{}.{}-None.{}".format(split, tgt, tgt)
)
tgt_dataset1 = load_indexed_dataset(filename, self.dicts[tgt])
tgt_dataset2 = load_indexed_dataset(filename, self.dicts[tgt])
noising_dataset = NoisingDataset(
tgt_dataset1,
self.dicts[tgt],
seed=1,
max_word_shuffle_distance=self.args.max_word_shuffle_distance,
word_dropout_prob=self.args.word_dropout_prob,
word_blanking_prob=self.args.word_blanking_prob,
)
noising_datasets[lang_pair] = self.alter_dataset_langtok(
LanguagePairDataset(
noising_dataset,
tgt_dataset1.sizes,
self.dicts[tgt],
tgt_dataset2,
tgt_dataset2.sizes,
self.dicts[tgt],
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
),
src_eos=self.dicts[tgt].eos(),
src_lang=tgt,
tgt_eos=self.dicts[tgt].eos(),
tgt_lang=tgt,
)
logger.info(
"denoising-{}: {} {} {} examples".format(
tgt,
data_path,
split,
len(noising_datasets[lang_pair]),
)
)
def language_pair_dataset(lang_pair):
src, tgt = lang_pair.split("-")
src_dataset, tgt_dataset = src_datasets[lang_pair], tgt_datasets[lang_pair]
return self.alter_dataset_langtok(
LanguagePairDataset(
src_dataset,
src_dataset.sizes,
self.dicts[src],
tgt_dataset,
tgt_dataset.sizes,
self.dicts[tgt],
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
),
self.dicts[src].eos(),
src,
self.dicts[tgt].eos(),
tgt,
)
self.datasets[split] = RoundRobinZipDatasets(
OrderedDict(
[
(lang_pair, language_pair_dataset(lang_pair))
for lang_pair in src_datasets.keys()
]
+ [
(_get_bt_dataset_key(lang_pair), dataset)
for lang_pair, dataset in backtranslate_datasets.items()
]
+ [
(_get_denoising_dataset_key(lang_pair), dataset)
for lang_pair, dataset in noising_datasets.items()
]
),
eval_key=None
if self.training
else "%s-%s" % (self.args.source_lang, self.args.target_lang),
)
def build_model(self, args, from_checkpoint=False):
from fairseq import models
model = models.build_model(args, self, from_checkpoint)
if not isinstance(model, FairseqMultiModel):
raise ValueError(
"SemisupervisedTranslationTask requires a FairseqMultiModel architecture"
)
# create SequenceGenerator for each model that has backtranslation dependency on it
self.sequence_generators = {}
if (
self.lambda_otf_bt > 0.0 or self.lambda_otf_bt_steps is not None
) and self.training:
for lang_pair in self.lang_pairs:
src, tgt = lang_pair.split("-")
key = "{}-{}".format(tgt, src)
self.sequence_generators[key] = SequenceGenerator(
[model.models[key]],
tgt_dict=self.dicts[src],
beam_size=args.bt_beam_size,
max_len_a=args.bt_max_len_a,
max_len_b=args.bt_max_len_b,
)
decoder_lang_tok_idx = self.get_decoder_langtok(src)
def backtranslate_fn(
sample,
model=model.models[key],
bos_token=decoder_lang_tok_idx,
sequence_generator=self.sequence_generators[key],
):
return sequence_generator.generate(
[model],
sample,
bos_token=bos_token,
)
self.backtranslators[lang_pair] = backtranslate_fn
return model
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
model.train()
if update_num > 0:
self.update_step(update_num)
agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, {}
def forward_backward(model, samples, logging_output_key, weight):
nonlocal agg_loss, agg_sample_size, agg_logging_output
if samples is None or len(samples) == 0:
return
loss, sample_size, logging_output = criterion(model, samples)
if ignore_grad:
loss *= 0
else:
loss *= weight
optimizer.backward(loss)
agg_loss += loss.detach().item()
# TODO make summing of the sample sizes configurable
agg_sample_size += sample_size
for k in logging_output:
agg_logging_output[k] += logging_output[k]
agg_logging_output[logging_output_key] += logging_output[k]
if self.lambda_parallel > 0.0:
for lang_pair in self.lang_pairs:
forward_backward(
model.models[lang_pair],
sample[lang_pair],
lang_pair,
self.lambda_parallel,
)
if self.lambda_otf_bt > 0.0:
for lang_pair in self.lang_pairs:
sample_key = _get_bt_dataset_key(lang_pair)
forward_backward(
model.models[lang_pair],
sample[sample_key],
sample_key,
self.lambda_otf_bt,
)
if self.lambda_denoising > 0.0:
for lang_pair in self.lang_pairs:
_, tgt = lang_pair.split("-")
sample_key = _get_denoising_dataset_key(lang_pair)
forward_backward(
model.models["{0}-{0}".format(tgt)],
sample[sample_key],
sample_key,
self.lambda_denoising,
)
return agg_loss, agg_sample_size, agg_logging_output
def update_step(self, num_updates):
def lambda_step_func(config, n_iter):
"""
Update a lambda value according to its schedule configuration.
"""
ranges = [
i
for i in range(len(config) - 1)
if config[i][0] <= n_iter < config[i + 1][0]
]
if len(ranges) == 0:
assert n_iter >= config[-1][0]
return config[-1][1]
assert len(ranges) == 1
i = ranges[0]
x_a, y_a = config[i]
x_b, y_b = config[i + 1]
return y_a + (n_iter - x_a) * float(y_b - y_a) / float(x_b - x_a)
if self.lambda_parallel_steps is not None:
self.lambda_parallel = lambda_step_func(
self.lambda_parallel_steps, num_updates
)
if self.lambda_denoising_steps is not None:
self.lambda_denoising = lambda_step_func(
self.lambda_denoising_steps, num_updates
)
if self.lambda_otf_bt_steps is not None:
self.lambda_otf_bt = lambda_step_func(self.lambda_otf_bt_steps, num_updates)
|