Spaces:
Runtime error
Runtime error
File size: 28,618 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import json
import logging
import math
import os
from argparse import Namespace
from collections import OrderedDict, defaultdict
from pathlib import Path
from typing import Dict, Sequence, Tuple
from argparse import ArgumentError
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import fairseq
from fairseq import metrics, options, utils
from fairseq.data import (
FairseqDataset,
LanguagePairDataset,
NoisingDataset,
PrependTokenDataset,
RoundRobinZipDatasets,
TransformEosLangPairDataset,
data_utils,
encoders,
)
from fairseq.sequence_generator import SequenceGenerator
from fairseq.tasks import register_task
from fairseq.tasks.translation import TranslationTask, load_langpair_dataset
logger = logging.getLogger(__name__)
class PiecewiseLinearFn:
"""Piecewise linear function. Can be configured with a string."""
def __init__(self, pieces: Sequence[Tuple[int, float]]):
assert pieces == sorted(
pieces
), f"PiecewiseLinearFn configuration should be sorted, received: {pieces}"
self.pieces = pieces
def __call__(self, x: int) -> float:
for i, (x_a, y_a) in enumerate(self.pieces[:-1]):
x_b, y_b = self.pieces[i + 1]
if x_a <= x <= x_b:
return y_a + (x - x_a) * (y_b - y_a) / (x_b - x_a)
return self.pieces[-1][1]
@staticmethod
def from_string(configuration: str) -> "PiecewiseLinearFn":
"""
Parse the configuration of lambda coefficient (for scheduling).
x = "3" # lambda will be a constant equal to x
x = "0:1,1000:0" # lambda will start from 1 and linearly decrease
# to 0 during the first 1000 iterations
x = "0:0,1000:0,2000:1" # lambda will be equal to 0 for the first 1000
# iterations, then will linearly increase to 1 until iteration 2000
"""
if isinstance(configuration, float):
return PiecewiseLinearFn([(0, configuration)])
try:
parts = configuration.split(",")
if len(parts) == 1:
v = float(configuration)
return PiecewiseLinearFn([(0, v)])
split = [s.split(":") for s in parts]
pieces = [(int(t), float(v)) for t, v in split]
return PiecewiseLinearFn(pieces)
except Exception:
raise ValueError(
f"Invalid PiecewiseLinearFn configuration: {configuration!r}"
)
@staticmethod
def one() -> "PiecewiseLinearFn":
return PiecewiseLinearFn([(0, 1.0)])
@register_task("online_backtranslation")
class OnlineBackTranslationTask(TranslationTask):
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
# Generic translation args
parser.add_argument('data', help='colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner; \
however, valid and test data are always in the first directory to \
avoid the need for repeating them in all directories')
parser.add_argument('--mono-langs', metavar='MONO_LANGS',
help='monolingual languages for training')
parser.add_argument('--valid-lang-pairs', default=None, metavar='VALID_LANG_PAIRS',
help='language pairs for validation')
parser.add_argument('--load-alignments', action='store_true',
help='load the binarized alignments')
parser.add_argument('--left-pad-source', default='False', type=str, metavar='BOOL',
help='pad the source on the left')
parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL',
help='pad the target on the left')
parser.add_argument('--upsample-primary', default=1, type=int,
help='amount to upsample primary dataset')
try:
parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N',
help='max number of tokens in the source sequence')
parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N',
help='max number of tokens in the target sequence')
except ArgumentError:
# this might have already been defined. Once we transition this to hydra it should be fine to add it here.
pass
parser.add_argument('--truncate-source', action='store_true', default=False,
help='truncate source to max-source-positions')
parser.add_argument('--num-batch-buckets', default=0, type=int, metavar='N',
help='if >0, then bucket source and target lengths into N '
'buckets and pad accordingly; this is useful on TPUs '
'to minimize the number of compilations')
# Denoising args
parser.add_argument('--max-word-shuffle-distance', default=3.0, type=float, metavar='N',
help='maximum word shuffle distance for denoising autoencoding data generation')
parser.add_argument('--word-dropout-prob', default=0.1, type=float, metavar='N',
help='word dropout probability for denoising autoencoding data generation')
parser.add_argument('--word-blanking-prob', default=0.2, type=float, metavar='N',
help='word blanking probability for denoising autoencoding data generation')
# Backtranslation args
parser.add_argument('--lambda-bt', default="1.0", type=str, metavar='N',
help='back-translation weight')
parser.add_argument('--lambda-dae', default="1.0", type=str, metavar='N',
help='denoising auto-encoder weight')
# Evaluation args
parser.add_argument('--generate-one-by-one', action='store_true',
help='generate one sentence at a time for backtranslation')
parser.add_argument('--eval-bleu', action='store_true',
help='evaluation with BLEU scores')
parser.add_argument('--eval-bleu-detok', type=str, default="space",
help='detokenize before computing BLEU (e.g., "moses"); '
'required if using --eval-bleu; use "space" to '
'disable detokenization; see fairseq.data.encoders '
'for other options')
parser.add_argument('--eval-bleu-detok-args', type=str, metavar='JSON',
help='args for building the tokenizer, if needed')
parser.add_argument('--eval-tokenized-bleu', action='store_true', default=False,
help='compute tokenized BLEU instead of sacrebleu')
parser.add_argument('--eval-bleu-remove-bpe', nargs='?', const='@@ ', default=None,
help='remove BPE before computing BLEU')
parser.add_argument('--eval-bleu-args', type=str, metavar='JSON',
help='generation args for BLUE scoring, '
'e.g., \'{"beam": 4, "lenpen": 0.6}\'')
parser.add_argument('--eval-bleu-print-samples', action='store_true',
help='print sample generations during validation')
# fmt: on
def __init__(self, args, common_dict, mono_langs, valid_lang_pairs):
super().__init__(args, common_dict, common_dict)
self.common_dict = common_dict
self.mono_langs = mono_langs
self.valid_lang_pairs = valid_lang_pairs
self.SHOW_SAMPLES_INTERVAL = 1000
# Start by showing samples
self._show_samples_ctr = self.SHOW_SAMPLES_INTERVAL
self.SHOW_SAMPLES_NUMBER = 5
self.lambda_bt = PiecewiseLinearFn.from_string(args.lambda_bt)
self.lambda_dae = PiecewiseLinearFn.from_string(args.lambda_dae)
self.args = args
self.data = utils.split_paths(self.args.data)
if len(self.data) == 1:
shards = list(Path(self.data[0]).glob("shard*"))
if len(shards) > 0:
# keep this as strings, since it can also be a manifold path
old_data = self.data
self.data = [str(shard) for shard in shards]
logging.warning(f"Expanded data directory {old_data} to {self.data}")
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
args (argparse.Namespace): parsed command-line arguments
"""
args.left_pad_source = options.eval_bool(args.left_pad_source)
args.left_pad_target = options.eval_bool(args.left_pad_target)
paths = utils.split_paths(args.data)
assert len(paths) > 0
assert args.mono_langs is not None
mono_langs = args.mono_langs.split(",")
valid_lang_pairs = args.valid_lang_pairs.split(",")
# load dictionary
dict_path = os.path.join(paths[0], "dict.txt")
common_dict = cls.load_dictionary(dict_path)
return cls(args, common_dict, mono_langs, valid_lang_pairs)
def load_dataset(self, split, epoch=1, combine=False, **kwargs) -> FairseqDataset:
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
if split == "train":
data_path = self.data[(epoch - 1) % len(self.data)]
dataset = self.load_train_dataset(data_path)
else:
# valid/test should always be the same.
dataset = self.load_translation_dataset(split, self.data[0])
self.datasets[split] = dataset
return dataset
def load_train_dataset(self, data_path: str) -> FairseqDataset:
"""The training dataset is made of backtranslation dataset and denoising dataset."""
data = []
for lang in self.mono_langs:
train_path = os.path.join(data_path, lang, "train")
# TODO: could we do the BT using denoise sample ?
# this would half the data loading work
data.append((f"{lang}-BT", self.load_bt_dataset(train_path, lang)))
data.append(
(f"{lang}-DENOISE", self.load_denoise_dataset(train_path, lang))
)
return RoundRobinZipDatasets(OrderedDict(data))
def _langpair_dataset(
self, src: FairseqDataset, tgt: FairseqDataset
) -> LanguagePairDataset:
return LanguagePairDataset(
src,
src.sizes,
self.dictionary,
tgt=tgt,
tgt_sizes=tgt.sizes,
tgt_dict=self.dictionary,
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
# TODO: should we shuffle ? we are already sorting batch by sizes so ?
# shuffle=True,
)
def _prepend_lang_bos_to_target(
self, dataset: LanguagePairDataset, lang: str
) -> LanguagePairDataset:
bos = _lang_token_index(self.dictionary, lang)
return TransformEosLangPairDataset(
dataset,
src_eos=self.dictionary.eos(),
new_src_eos=self.dictionary.eos(),
tgt_bos=self.dictionary.eos(),
new_tgt_bos=bos,
)
def load_bt_dataset(self, data_path: str, lang: str) -> FairseqDataset:
"""The BT dataset is generated with (tgt, tgt) pairs.
The actual translation to a (generated_src, tgt) pair
is done on the fly during training.
"""
mono_dataset = data_utils.load_indexed_dataset(
data_path, self.common_dict, self.args.dataset_impl
)
assert mono_dataset is not None, f"No dataset found for {lang}"
mono_dataset_src = PrependTokenDataset(
mono_dataset, _lang_token_index(self.dictionary, lang)
)
mono_dataset_bt = self._langpair_dataset(mono_dataset_src, mono_dataset)
logger.info(
f"mono_lang = {lang} "
f"lang token index = {_lang_token_index(self.dictionary, lang)} "
f"lang token = {_lang_token(lang)}"
)
mono_dataset_bt = self._prepend_lang_bos_to_target(mono_dataset_bt, lang)
return mono_dataset_bt
def load_denoise_dataset(self, data_path: str, lang: str) -> FairseqDataset:
"""Classic denoising dataset"""
dataset = data_utils.load_indexed_dataset(
data_path, self.common_dict, self.args.dataset_impl
)
noisy_dataset = NoisingDataset(
dataset,
self.dictionary,
seed=1,
max_word_shuffle_distance=self.args.max_word_shuffle_distance,
word_dropout_prob=self.args.word_dropout_prob,
word_blanking_prob=self.args.word_blanking_prob,
)
noisy_dataset = PrependTokenDataset(
noisy_dataset, _lang_token_index(self.dictionary, lang)
)
clean_dataset = data_utils.load_indexed_dataset(
data_path, self.common_dict, self.args.dataset_impl
)
denoising_dataset = self._langpair_dataset(noisy_dataset, clean_dataset)
denoising_dataset = self._prepend_lang_bos_to_target(denoising_dataset, lang)
return denoising_dataset
def load_translation_dataset(
self, split: str, data_path: str, combine: bool = False
):
# only judging with one language pair for the moment,
# since ConcatDataset doesn't work as expected
assert len(self.valid_lang_pairs) == 1, "For now..."
valid_lang_pair = self.valid_lang_pairs[0]
src, tgt = valid_lang_pair.split("-")
# use the same function than TranslationTask
src_tgt_dt = load_langpair_dataset(
data_path,
split,
src,
self.common_dict,
tgt,
self.common_dict,
combine=combine,
dataset_impl=self.args.dataset_impl,
upsample_primary=self.args.upsample_primary,
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
max_source_positions=self.args.max_source_positions,
max_target_positions=self.args.max_target_positions,
load_alignments=self.args.load_alignments,
truncate_source=self.args.truncate_source,
num_buckets=self.args.num_batch_buckets,
shuffle=(split != "test"),
prepend_bos_src=_lang_token_index(self.dictionary, src),
)
src_tgt_eos_dt = self._prepend_lang_bos_to_target(src_tgt_dt, tgt)
src_tgt_eos_dt.args = self.args
return src_tgt_eos_dt
def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
raise NotImplementedError
def build_model(self, args, from_checkpoint=False):
# torch.autograd.set_detect_anomaly(True)
model = super().build_model(args, from_checkpoint)
add_secial_tokens_to_dict_and_model(self.common_dict, model, self.mono_langs)
self.sequence_generators = {}
for mono_lang in self.mono_langs:
self.sequence_generators[mono_lang] = SequenceGenerator(
[model],
tgt_dict=self.dictionary,
beam_size=1,
max_len_a=1.3,
max_len_b=5,
min_len=5,
# keep 1 to be able to prepend bos
max_len=model.max_decoder_positions() - 1,
)
if getattr(args, "eval_bleu", False):
assert getattr(args, "eval_bleu_detok", None) is not None, (
"--eval-bleu-detok is required if using --eval-bleu; "
"try --eval-bleu-detok=moses (or --eval-bleu-detok=space "
"to disable detokenization, e.g., when using sentencepiece)"
)
detok_args = json.loads(getattr(args, "eval_bleu_detok_args", "{}") or "{}")
self.tokenizer = encoders.build_tokenizer(
Namespace(
tokenizer=getattr(args, "eval_bleu_detok", None), **detok_args
)
)
gen_args = json.loads(getattr(args, "eval_bleu_args", "{}") or "{}")
self.bleu_sequence_generator = self.build_generator(
[model], Namespace(**gen_args)
)
return model
def max_positions(self):
"""Return the max sentence length allowed by the task."""
return (self.args.max_source_positions, self.args.max_target_positions)
@property
def dictionary(self):
"""Return the source :class:`~fairseq.data.Dictionary`."""
return self.common_dict
def display_samples_once_in_a_while(self, smp, mono_lang, other_lang):
self._show_samples_ctr += 1
if self._show_samples_ctr < self.SHOW_SAMPLES_INTERVAL:
return
self._show_samples_ctr = 0
ln = smp["net_input"]["src_tokens"].shape[0]
logger.info(
f"(r:{self.args.distributed_rank}) : "
f"{other_lang} ---> {mono_lang} "
f"({other_lang} was generated by back-translation.) {ln} samples"
)
for i in range(min(ln, self.SHOW_SAMPLES_NUMBER)):
src_tokens = smp["net_input"]["src_tokens"][i]
tgt_tokens = smp["target"][i]
src_str = self.dictionary.string(src_tokens, "sentencepiece")
tgt_str = self.dictionary.string(tgt_tokens, "sentencepiece")
logger.info(
f"\n{i}\t\t[{other_lang} generated] {src_str}\n"
f"\t\t[{mono_lang} original ] {tgt_str}\n"
f"\t\t[ src tokens] {src_tokens}\n"
)
def backtranslate_sample(self, smp, orig_lang, other_lang) -> None:
"""
* WARNING: smp is modified in place.
* At the start of this function, `smp` has the same input and target:
|--------------------------------------------------------|
| smp['net_input']['src_tokens'] | smp['target'] |
| (from data) __en__ hello world | __en__ hello world |
|--------------------------------------------------------|
* We call generator.generate(smp, bos_token = token("ro")),
and copy the result as input
* At the end, `smp` has the translation to other language.
|--------------------------------------------------------|
| smp['net_input']['src_tokens'] | smp['target'] |
| (generated) __ro__ salut lume | __en__ hello world |
|--------------------------------------------------------|
"""
bos_token = _lang_token_index(self.dictionary, other_lang)
generated = self.sequence_generators[orig_lang].generate(
models=[], sample=smp, bos_token=bos_token
)
max_lngth = max([gn[0]["tokens"].size(0) for gn in generated])
net_input = smp["net_input"]
n_src_tokens = torch.empty(
size=(len(generated), max_lngth + 1), dtype=net_input["src_tokens"].dtype
)
n_src_lengths = torch.empty(
len(generated), dtype=net_input["src_lengths"].dtype
)
for i, gn in enumerate(generated):
tokens = gn[0]["tokens"]
tokens_size = tokens.size(0)
padding_needed = max_lngth - tokens_size
tokens = torch.cat([tokens.new([bos_token]), tokens])
tokens = F.pad(tokens, (0, padding_needed), value=self.dictionary.pad())
n_src_tokens[i] = tokens
n_src_lengths[i] = tokens_size + 1
device = net_input["src_tokens"].device
# This seems to be important
del net_input["src_tokens"]
del net_input["src_lengths"]
net_input["src_tokens"] = n_src_tokens.to(device)
net_input["src_lengths"] = n_src_lengths.to(device)
def generate(self, smp, model):
model.eval()
orig_lang = (
self.dictionary[smp["net_input"]["src_tokens"][0][0]]
.replace(" ", "")
.replace("_", "")
)
bos_token = smp["net_input"]["prev_output_tokens"][0][0]
with torch.no_grad():
generated = self.sequence_generators[orig_lang].generate(
models=[model], sample=smp, bos_token=bos_token
)
return generated
def get_other_lang(self, lang):
# TODO: allow more complex mapping
if lang != self.mono_langs[0]:
return self.mono_langs[0]
if len(self.mono_langs) == 2:
return self.mono_langs[1]
return self.mono_langs[np.random.randint(1, len(self.mono_langs))]
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
model.train()
model.set_num_updates(update_num)
agg_loss, agg_sample_size = 0.0, 0.0
agg_logging_output: Dict[str, float] = defaultdict(float)
dataset_keys = self.datasets["train"].datasets.keys()
weights = {
"BT": self.lambda_bt(update_num),
"DENOISE": self.lambda_dae(update_num),
}
log_keys = {"BT": "bt_", "DENOISE": "dae_"}
for dataset_key in dataset_keys:
smp = sample[dataset_key]
mono_lang, task_subtype = dataset_key.split("-")
if weights[task_subtype] == 0:
continue
if task_subtype == "BT":
with torch.autograd.profiler.record_function("backtranslation"):
model.eval()
# TODO: Could we translate to several language at once ?
# this would allow to share encoder_out and maximize GPU usage.
other_lang = self.get_other_lang(mono_lang)
self.backtranslate_sample(smp, mono_lang, other_lang)
self.display_samples_once_in_a_while(smp, mono_lang, other_lang)
model.train()
# Like in FairseqTask.train_step
with torch.autograd.profiler.record_function("forward"):
loss, sample_size, logging_output = criterion(model, smp)
loss *= weights[task_subtype]
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
agg_loss += loss.item()
agg_sample_size += sample_size
for k in logging_output:
agg_logging_output[log_keys[task_subtype] + k] += logging_output[k]
agg_logging_output[k] += logging_output[k]
return agg_loss, agg_sample_size, agg_logging_output
def get_bos_token_from_sample(self, sample):
net_input = sample["net_input"]
source_lang_token_id = torch.unique(net_input["src_tokens"][:, 0]).item()
source_lang_token = self.dictionary[source_lang_token_id].replace("_", "")
target_lang_token_id = _lang_token_index(
self.dictionary, self.get_other_lang(source_lang_token)
)
return target_lang_token_id
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
bt_sample_size = sum(x.get("bt_sample_size", 0) for x in logging_outputs)
if bt_sample_size:
bt_loss_sum = sum(x.get("bt_loss", 0) for x in logging_outputs)
bt_loss_sum *= 1 / bt_sample_size / math.log(2)
metrics.log_scalar("bt_loss", bt_loss_sum, bt_sample_size, round=3)
bt_nll_loss_sum = sum(x.get("bt_nll_loss", 0) for x in logging_outputs)
bt_ntokens = sum(x.get("bt_ntokens", 0) for x in logging_outputs)
bt_nll_loss_sum *= 1 / bt_ntokens / math.log(2)
metrics.log_scalar("bt_nll_loss", bt_nll_loss_sum, bt_ntokens, round=3)
metrics.log_derived(
"bt_ppl", lambda meters: utils.get_perplexity(meters["bt_nll_loss"].avg)
)
dae_sample_size = sum(x.get("dae_sample_size", 0) for x in logging_outputs)
if dae_sample_size:
dae_loss_sum = sum(x.get("dae_loss", 0) for x in logging_outputs)
dae_loss_sum *= 1 / dae_sample_size / math.log(2)
metrics.log_scalar("dae_loss", dae_loss_sum, dae_sample_size, round=3)
dae_nll_loss_sum = sum(x.get("dae_nll_loss", 0) for x in logging_outputs)
dae_ntokens = sum(x.get("dae_ntokens", 0) for x in logging_outputs)
dae_nll_loss_sum *= 1 / dae_ntokens / math.log(2)
metrics.log_scalar("dae_nll_loss", dae_nll_loss_sum, dae_ntokens, round=3)
metrics.log_derived(
"dae_ppl",
lambda meters: utils.get_perplexity(meters["dae_nll_loss"].avg),
)
@torch.no_grad()
def extend_embedding(
emb: nn.Module, new_vocab_size: int, copy_from_token_id: int
) -> None:
old_emb_data = emb.weight.data
(old_vocab_size, dim) = old_emb_data.shape
assert new_vocab_size >= old_vocab_size
if new_vocab_size > old_vocab_size:
emb.weight.data = torch.zeros((new_vocab_size, dim))
emb.weight.data[:old_vocab_size, :] = old_emb_data
# initialize new embeddings
emb.weight.data[old_vocab_size:, :] = old_emb_data[copy_from_token_id]
if hasattr(emb, "num_embeddings"):
emb.num_embeddings = new_vocab_size
if hasattr(emb, "out_features"):
emb.out_features = new_vocab_size
if getattr(emb, "bias", None) is None:
return
# Fix the bias.
# Bias shape can be different from the previous vocab size
# if the weight matrix was shared and alread extended but not the bias.
(old_vocab_size,) = emb.bias.shape
assert new_vocab_size >= old_vocab_size
if new_vocab_size > old_vocab_size:
old_bias = emb.bias.data
new_bias = torch.zeros(
(new_vocab_size,), dtype=old_bias.dtype, device=old_bias.device
)
new_bias[:old_vocab_size] = old_bias
emb.bias.data = new_bias
def add_secial_tokens_to_dict_and_model(
dictionary: "fairseq.data.Dictionary",
model: nn.Module,
mono_langs: Sequence[str],
) -> None:
embs = model.encoder.embed_tokens
vocab_size, embedding_dim = embs.weight.shape
# The model may or may not have a '<mask>' embedding yet
assert (
len(dictionary) <= vocab_size <= len(dictionary) + 1
), f"Dictionary len ({len(dictionary)}) doesn't match embs shape ({embs.weight.shape})"
# TODO: we should reuse the pretrained model dict which already has <mask>
dictionary.add_symbol("<mask>")
for lang in mono_langs:
lang_token = _lang_token(lang)
dictionary.add_symbol(lang_token)
logger.info(
f"dictionary: {len(dictionary)} -> {vocab_size} tokens "
f"after adding {len(mono_langs)} lang tokens."
)
if len(dictionary) <= vocab_size:
return
extend_embedding(embs, len(dictionary), dictionary.bos())
dec_embs = model.decoder.embed_tokens
extend_embedding(dec_embs, len(dictionary), dictionary.bos())
lm_head = model.decoder.output_projection
extend_embedding(lm_head, len(dictionary), dictionary.bos())
assert lm_head.weight.shape == (len(dictionary), embedding_dim)
def _lang_token(lang: str) -> str:
return f"__{lang}__"
def _lang_token_index(dictionary, lang: str) -> int:
return dictionary.index(_lang_token(lang))
@contextlib.contextmanager
def assert_weights_have_changed(model: nn.Module):
def checksum(model: nn.Module) -> float:
return sum(p.sum().item() for p in model.parameters())
initial_checksum = checksum(model)
yield model
final_checksum = checksum(model)
logger.info(
f"initial_checksum={initial_checksum} -> final_checksum={final_checksum}"
)
assert initial_checksum != final_checksum, "Model hasn't changed !"
|