File size: 10,900 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.optim

from . import LegacyFairseqOptimizer, register_optimizer


@register_optimizer("adafactor")
class FairseqAdafactor(LegacyFairseqOptimizer):
    def __init__(self, args, params):
        super().__init__(args)
        self._optimizer = Adafactor(params, **self.optimizer_config)

    @staticmethod
    def add_args(parser):
        """Add optimizer-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--adafactor-eps', default='(1e-30, 1e-3)', metavar="E",
                            help='epsilons for Adafactor optimizer')
        parser.add_argument('--clip-threshold', type=float, default=1.0, metavar="C",
                            help='threshold for clipping update root mean square')
        parser.add_argument('--decay-rate', type=float, default=-0.8, metavar="D",
                            help='decay rate of the second moment estimator')
        parser.add_argument('--beta1', type=float, default=None, metavar="B",
                            help='beta for first moment estimator. Optional')
        parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
                            help='weight decay')
        parser.add_argument('--scale-parameter', action='store_true',
                            help='scale learning rate by root mean square of parameter')
        parser.add_argument('--relative-step', action='store_true',
                            help='set learning rate to inverse square root of timestep,'
                                 'otherwise use external learning rate')
        parser.add_argument('--warmup-init', action='store_true',
                            help='use relative step for warm-up learning rate schedule')
        # fmt: on

    @property
    def optimizer_config(self):
        """
        Return a kwarg dictionary that will be used to override optimizer
        args stored in checkpoints. This allows us to load a checkpoint and
        resume training using a different set of optimizer args, e.g., with a
        different learning rate.
        Note : Convergence issues empirically observed with fp16 on.
               Might require search for appropriate configuration.
        """
        return {
            "lr": self.args.lr[0],
            "eps": eval(self.args.adafactor_eps),
            "clip_threshold": self.args.clip_threshold,
            "decay_rate": self.args.decay_rate,
            "beta1": self.args.beta1,
            "weight_decay": self.args.weight_decay,
            "scale_parameter": self.args.scale_parameter,  # defaults to False
            "relative_step": self.args.relative_step,  # defaults to False
            "warmup_init": self.args.warmup_init,
        }


class Adafactor(torch.optim.Optimizer):
    """Implements Adafactor algorithm.

    This implementation is based on:
    `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`
    (see https://arxiv.org/abs/1804.04235)

    Note that this optimizer internally adjusts the learning rate
    depending on the *scale_parameter*, *relative_step* and
    *warmup_init* options. To use a manual (external) learning rate
    schedule you should set `scale_parameter=False` and
    `relative_step=False`.

    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): external learning rate (default: None)
        eps (tuple[float, float]): regularization constans for square gradient
            and parameter scale respectively (default: (1e-30, 1e-3))
        clip_threshold (float): threshold of root mean square of
            final gradient update (default: 1.0)
        decay_rate (float): coefficient used to compute running averages of square
            gradient (default: -0.8)
        beta1 (float): coefficient used for computing running averages of gradient
            (default: None)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        scale_parameter (bool): if True, learning rate is scaled by root mean square of
            parameter (default: True)
        relative_step (bool): if True, time-dependent learning rate is computed
            instead of external learning rate (default: True)
        warmup_init (bool): time-dependent learning rate computation depends on
            whether warm-up initialization is being used (default: False)
    """

    def __init__(
        self,
        params,
        lr=None,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        beta1=None,
        weight_decay=0.0,
        scale_parameter=True,
        relative_step=True,
        warmup_init=False,
    ):
        if lr is not None and relative_step:
            raise ValueError("Cannot combine manual lr and relative_step options")
        if warmup_init and not relative_step:
            raise ValueError("warmup_init requires relative_step=True")

        defaults = dict(
            lr=lr,
            eps=eps,
            clip_threshold=clip_threshold,
            decay_rate=decay_rate,
            beta1=beta1,
            weight_decay=weight_decay,
            scale_parameter=scale_parameter,
            relative_step=relative_step,
            warmup_init=warmup_init,
        )
        super(Adafactor, self).__init__(params, defaults)

    @property
    def supports_memory_efficient_fp16(self):
        return True

    @property
    def supports_flat_params(self):
        return False

    def _get_lr(self, param_group, param_state):
        rel_step_sz = param_group["lr"]
        if param_group["relative_step"]:
            min_step = (
                1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
            )
            rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
        param_scale = 1.0
        if param_group["scale_parameter"]:
            param_scale = max(param_group["eps"][1], param_state["RMS"])
        return param_scale * rel_step_sz

    def _get_options(self, param_group, param_shape):
        factored = len(param_shape) >= 2
        use_first_moment = param_group["beta1"] is not None
        return factored, use_first_moment

    def _rms(self, tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col):
        r_factor = (
            (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True))
            .rsqrt_()
            .unsqueeze(-1)
        )
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    def step(self, closure=None):
        """Performs a single optimization step.

        Args:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.dtype in {torch.float16, torch.bfloat16}:
                    grad = grad.float()
                if grad.is_sparse:
                    raise RuntimeError("Adafactor does not support sparse gradients.")

                state = self.state[p]
                grad_shape = grad.shape

                factored, use_first_moment = self._get_options(group, grad_shape)
                # State Initialization
                if len(state) == 0:
                    state["step"] = 0

                    if use_first_moment:
                        # Exponential moving average of gradient values
                        state["exp_avg"] = torch.zeros_like(grad)
                    if factored:
                        state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
                        state["exp_avg_sq_col"] = torch.zeros(
                            grad_shape[:-2] + grad_shape[-1:]
                        ).to(grad)
                    else:
                        state["exp_avg_sq"] = torch.zeros_like(grad)

                    state["RMS"] = 0
                else:
                    if use_first_moment:
                        state["exp_avg"] = state["exp_avg"].to(grad)
                    if factored:
                        state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
                        state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
                    else:
                        state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

                p_data_fp32 = p.data
                if p.data.dtype in {torch.float16, torch.bfloat16}:
                    p_data_fp32 = p_data_fp32.float()

                state["step"] += 1
                state["RMS"] = self._rms(p_data_fp32)
                group["lr"] = self._get_lr(group, state)

                beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
                update = (grad**2) + group["eps"][0]
                if factored:
                    exp_avg_sq_row = state["exp_avg_sq_row"]
                    exp_avg_sq_col = state["exp_avg_sq_col"]

                    exp_avg_sq_row.mul_(beta2t).add_(
                        update.mean(dim=-1), alpha=1.0 - beta2t
                    )
                    exp_avg_sq_col.mul_(beta2t).add_(
                        update.mean(dim=-2), alpha=1.0 - beta2t
                    )

                    # Approximation of exponential moving average of square of gradient
                    update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state["exp_avg_sq"]

                    exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_(
                    (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)
                )
                update.mul_(group["lr"])

                if use_first_moment:
                    exp_avg = state["exp_avg"]
                    exp_avg.mul_(group["beta1"]).add_(update, alpha=1 - group["beta1"])
                    update = exp_avg

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(
                        p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
                    )

                p_data_fp32.add_(-update)

                if p.data.dtype in {torch.float16, torch.bfloat16}:
                    p.data.copy_(p_data_fp32)

        return loss