Spaces:
Runtime error
Runtime error
File size: 18,584 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import logging
from collections.abc import Iterable
from itertools import repeat
from typing import List, Optional, Tuple
import torch
from torch import Tensor
# ------------------------------------------------------------------------------
# assert_equal()
# ------------------------------------------------------------------------------
def assert_equal(value1, value2, name1=None, name2=None):
"""Asserts two values are equal otherwise raise an error."""
str_name1 = "" if name1 is None else "{} ".format(name1)
str_name2 = "" if name2 is None else "{} ".format(name2)
if value1 != value2:
str_value1 = "{}" if name1 is None else "({})"
str_value1 = str_value1.format(value1)
str_value2 = "{}" if name2 is None else "({})"
str_value2 = str_value2.format(value2)
raise ValueError(
"Expected {}{} == {}{}".format(str_name1, str_value1, str_name2, str_value2)
)
def fill_config(config, key, value):
if value is not None:
if key not in config or config[key] is None:
config[key] = value
assert_equal(value, config[key], "value", f'config["{key}"]')
# ------------------------------------------------------------------------------
# check_and_return_expected()
# ------------------------------------------------------------------------------
def check_and_return_expected(value, undefined_value, expected_value, name=None):
"""
Return the expected value while checking if the given value is undefined or
equal to the expected value.
"""
if (undefined_value is None and value is None) or (undefined_value == value):
return expected_value
if value != expected_value:
str_name = "" if name is None else "{} ".format(name)
str_value = "{}" if name is None else "({})"
str_value = str_value.format(value)
raise ValueError(
"Expected {}{} == {}".format(str_name, str_value, expected_value)
)
return expected_value
# ------------------------------------------------------------------------------
# get_time_axis()
# ------------------------------------------------------------------------------
def get_time_axis(layout):
"""
Extract the time axis from the layout, for example for breaking sequence into
segments.
"""
if layout in ["TB", "TBD"]:
return 0
if layout in ["BT", "BTD"]:
return 1
if layout in ["BCTD"]:
return 2
raise ValueError("Unsupported layout = {}".format(layout))
# ------------------------------------------------------------------------------
# get_batch_axis()
# ------------------------------------------------------------------------------
def get_batch_axis(layout):
"""
Extract the batch axis from the layout
"""
if layout in ["TB", "TBD"]:
return 1
if layout in ["BT", "BTD", "BCTD"]:
return 0
raise ValueError("Unsupported layout = {}".format(layout))
# ------------------------------------------------------------------------------
# monotonically_increasing_and_bounded()
# ------------------------------------------------------------------------------
def monotonically_increasing_and_bounded(iterable, min=None, max=None):
"""
Check if the elements in the given iterable are monotonically increasing and
bounded by upper/lower bounds.
"""
if not isinstance(iterable, Iterable):
raise TypeError(
"Expected iterable to be of type Iterable, got ({})".format(
iterable.__class__.__name__
)
)
for i in range(len(iterable)):
if min is not None and iterable[i] < min:
return False
if max is not None and iterable[i] > max:
return False
if i > 0 and iterable[i] <= iterable[i - 1]:
return False
return True
# ------------------------------------------------------------------------------
# to_pair()
# ------------------------------------------------------------------------------
def to_pair(value, name):
"""Make a pair (of type tuple) of given value."""
if isinstance(value, Iterable):
if len(value) != 2:
raise ValueError(
"Expected `{}` to have exactly 2 elements, got: ({})".format(
name, value
)
)
return value
return tuple(repeat(value, 2))
# ------------------------------------------------------------------------------
# infer_conv_output_attrs()
# ------------------------------------------------------------------------------
# TODO(cfyeh): figure out if we can get `output_dim` without calling the module.
def infer_conv_output_attrs(
module, input_channels, input_dim, batch_size=1, max_length=8
):
"""Get output attributes of a module with input."""
input = torch.randn(batch_size, input_channels, max_length, input_dim)
output = module(input)
output_channels = output.shape[1]
output_dim = output.shape[-1]
return output_channels, output_dim
# ------------------------------------------------------------------------------
# NoOp
# ------------------------------------------------------------------------------
class NoOp(torch.nn.Module):
"""
NoOp simply passes the input as the output.
"""
def __init__(self):
super().__init__()
def forward(self, input: Tensor) -> Tensor:
return input
# ------------------------------------------------------------------------------
# Permute: a torch.nn.Module applies permutation on the input tensor.
# ------------------------------------------------------------------------------
class Permute(torch.nn.Module):
def __init__(self, dims):
super().__init__()
self.dims = dims
def forward(self, input: Tensor) -> Tensor:
return input.permute(self.dims).contiguous()
# ------------------------------------------------------------------------------
# lengths_to_padding_mask()
# ------------------------------------------------------------------------------
def lengths_to_padding_mask(lengths: Tensor) -> Tensor:
"""Convert lengths of shape (B, ) to padding mask."""
batch_size = lengths.shape[0]
max_length = int(torch.max(lengths).item())
padding_mask = torch.arange( # [0, ..., T-1]
max_length, device=lengths.device, dtype=lengths.dtype
).expand(batch_size, max_length) >= lengths.unsqueeze(1)
return padding_mask
# ------------------------------------------------------------------------------
# lengths_to_attention_mask()
# ------------------------------------------------------------------------------
def lengths_to_attention_mask(
lengths: Tensor,
left_context: Optional[int] = None,
right_context: Optional[int] = None,
) -> Optional[Tensor]:
"""
Generate attention mask based on (lengths, left_context, right_context).
left_context is None means unlimited left context.
right_context is None means unlimited right context.
"""
if left_context is None and right_context is None:
return None
max_length = int(torch.max(lengths).item())
# For example, with `max_length` == 5,
# indices = tensor([
# [ 0, 1, 2, 3, 4, 5],
# [-1, 0, 1, 2, 3, 4],
# [-2, -1, 0, 1, 2, 3],
# [-3, -2, -1, 0, 1, 2],
# [-4, -3, -2, -1, 0, 1],
# [-5, -4, -3, -2, -1, 0],
# ])
# In some cases the second torch.arange is created on cpu which causes a
# failure. Adding the device option to guard against it.
indices = torch.arange(
max_length, device=lengths.device, dtype=lengths.dtype
).expand(max_length, max_length) - torch.arange(
max_length, device=lengths.device
).view(
max_length, -1
)
# For example, with `max_length` == 5,
# bool_mask = tensor([
# [True, True, True, True, True],
# [True, True, True, True, True],
# [True, True, True, True, True],
# [True, True, True, True, True],
# [True, True, True, True, True],
# ])
bool_mask = (
torch.tensor([True]).to(device=lengths.device).expand(max_length, max_length)
)
# For example, with `max_length` == 5, left_context == 2
# left_mask = tensor([
# [ True, True, True, True, True],
# [ True, True, True, True, True],
# [ True, True, True, True, True],
# [False, True, True, True, True],
# [False, False, True, True, True],
# ])
if left_context is not None:
left_mask = indices >= -left_context
bool_mask = bool_mask & left_mask
# For example, with `max_length` == 5, right_context == 1
# right_mask = tensor([
# [True, True, False, False, False],
# [True, True, True, False, False],
# [True, True, True, True, False],
# [True, True, True, True, True],
# [True, True, True, True, True],
# ])
if right_context is not None:
right_mask = indices <= right_context
bool_mask = bool_mask & right_mask
bool_mask = (~bool_mask).to(device=lengths.device)
return bool_mask
# ------------------------------------------------------------------------------
# infer_output_norm()
# ------------------------------------------------------------------------------
def infer_output_norm(module, output_norm=None):
"""
Infer the output norm (string and module) needed on the module gvien desired
output normalization.
"""
if output_norm == module.output_norm():
# output_norm already matches module.output_norm().
return (None, NoOp())
if output_norm is None and module.output_norm() is not None:
logger = logging.getLogger("infer_output_norm()")
logger.warning(
"trying to set output_norm ({}) ".format(output_norm)
+ "but got module.output_norm() ({}), ".format(module.output_norm())
+ "the combined output_norm() will be ({})".format(module.output_norm())
)
return (None, NoOp())
if output_norm == "log_softmax":
if module.output_norm() is not None:
raise ValueError(
"incompatible output_norm ({}) ".format(output_norm)
+ "and module.output_norm() ({})".format(module.output_norm())
)
else:
return ("log_softmax", torch.nn.LogSoftmax(dim=-1))
if output_norm == "softmax":
if module.output_norm() is not None:
raise ValueError(
"incompatible output_norm ({}) ".format(output_norm)
+ "and module.output_norm() ({})".format(module.output_norm())
)
else:
return ("softmax", torch.nn.Softmax(dim=-1))
raise ValueError(
"output_norm ({}) not in ".format(output_norm)
+ "supported list = [None, softmax, log_softmax]"
)
# ------------------------------------------------------------------------------
# infer_channels_from_layout()
# ------------------------------------------------------------------------------
def infer_channels_from_layout(layout, channels):
"""Extract the number of channels from the layout."""
if layout in ("TBD", "BTD"):
if channels is not None and channels != 1:
raise ValueError(
"Expected channels ({}) to be 1 for layout = {}".format(
channels, layout
)
)
if channels is None:
return 1
return channels
# ------------------------------------------------------------------------------
# pad_sequence()
# ------------------------------------------------------------------------------
@torch.jit.export
def pad_sequence(
sequence: Tensor,
time_axis: int,
extra_left_context: int = 0,
extra_right_context: int = 0,
) -> Tensor:
"""Pad extra left/right contexts to the sequence."""
if extra_left_context == 0 and extra_right_context == 0:
return sequence
tensors_to_concat = []
if extra_left_context:
size = (extra_left_context,)
fill_value = 0
indices = torch.full(
size=size,
fill_value=fill_value,
dtype=torch.long,
device=sequence.device,
)
left_padding = torch.index_select(sequence, time_axis, indices)
tensors_to_concat.append(left_padding)
tensors_to_concat.append(sequence)
# NOTE(cfyeh): for efficiency reason we pad 0 instead of the last frame for
# extra right contexts.
if extra_right_context:
size = list(sequence.shape)
size[time_axis] = extra_right_context
right_padding = torch.zeros(size, dtype=sequence.dtype, device=sequence.device)
tensors_to_concat.append(right_padding)
padded_sequence = torch.cat(tensors_to_concat, dim=time_axis)
return padded_sequence
# ------------------------------------------------------------------------------
# sequence_to_segments()
# ------------------------------------------------------------------------------
@torch.jit.export
def sequence_to_segments(
sequence: Tensor,
time_axis: int,
lengths: Tensor,
segment_size: Optional[int] = None,
extra_left_context: int = 0,
extra_right_context: int = 0,
) -> List[Tuple[Tensor, Tensor]]:
"""Breaks sequence into segments."""
sequence = pad_sequence(
sequence=sequence,
time_axis=time_axis,
extra_left_context=extra_left_context,
extra_right_context=extra_right_context,
)
lengths = lengths + extra_left_context + extra_right_context
segments: List[Tuple[Tensor, Tensor]] = []
if segment_size is None:
segments.append((sequence, lengths))
return segments
offset = 0
end = sequence.shape[time_axis]
step = segment_size
size = extra_left_context + segment_size + extra_right_context
while offset + extra_left_context + extra_right_context < end:
clamped_size = min(size, end - offset)
segment_lengths = torch.clamp(lengths - offset, min=0, max=clamped_size)
indices = torch.arange(
start=offset,
end=(offset + clamped_size),
step=1,
dtype=torch.long,
device=sequence.device,
)
segment_tensor = torch.index_select(sequence, time_axis, indices)
segments.append((segment_tensor, segment_lengths))
offset = offset + step
return segments
# ------------------------------------------------------------------------------
# segments_to_sequence()
# ------------------------------------------------------------------------------
@torch.jit.export
def segments_to_sequence(
segments: List[Tuple[Tensor, Tensor]], time_axis: int
) -> Tuple[Tensor, Tensor]:
"""Concatenate segments into a full sequence."""
if len(segments) == 1:
return segments[0]
tensors_to_concat: List[Tensor] = []
lengths_to_stack: List[Tensor] = []
for tensor, lengths in segments:
tensors_to_concat.append(tensor)
lengths_to_stack.append(lengths)
sequence = torch.cat(tensors_to_concat, dim=time_axis)
lengths = torch.stack(lengths_to_stack, dim=0)
lengths = torch.sum(lengths, dim=0)
return sequence, lengths
def lengths_to_encoder_padding_mask(lengths, batch_first: bool = False):
"""
convert lengths (a 1-D Long/Int tensor) to 2-D binary tensor
Args:
lengths: a (B, )-shaped tensor
batch_first: whether to return a (B, T) tensor
Return:
max_length: maximum length of B sequences
encoder_padding_mask: a (max_length, B) binary mask, where
[t, b] = False for t < lengths[b] and True otherwise
TODO:
kernelize this function if benchmarking shows this function is slow
"""
max_lengths = torch.max(lengths).item()
bsz = lengths.size(0)
encoder_padding_mask = torch.arange(
max_lengths
).to( # a (T, ) tensor with [0, ..., T-1]
lengths.device
).view( # move to the right device
1, max_lengths
).expand( # reshape to (1, T)-shaped tensor
bsz, -1
) > lengths.view( # expand to (B, T)-shaped tensor
bsz, 1
).expand(
-1, max_lengths
)
if not batch_first:
return encoder_padding_mask.t(), max_lengths
else:
return encoder_padding_mask, max_lengths
# ------------------------------------------------------------------------------
# attention suppression
# ------------------------------------------------------------------------------
def attention_suppression(attention_weights: Tensor, scale: float):
# B, H, qlen, klen -> B, H, qlen, 1
attention_prob = torch.nn.functional.softmax(attention_weights.float(), dim=-1)
attention_nozeros = attention_prob.to(torch.bool)
nozeros_sum = torch.sum(attention_nozeros.to(torch.float), dim=-1, keepdim=True)
# For very sparse situation, we need get round about 0s
key_sum = torch.sum(attention_prob, dim=-1, keepdim=True)
# nozeros_sum should > 1
key_mean = key_sum / (nozeros_sum + 1e-8)
# std calculation
dis = (attention_prob - key_mean) * (attention_prob - key_mean)
# if attention_prob[i] < threshold, then dis_masked[i] = 0; for all i
dis_masked = torch.where(
attention_nozeros, dis, attention_prob.new_zeros(attention_prob.size())
)
key_var = torch.sum(dis_masked, dim=-1, keepdim=True)
key_var = key_var / (nozeros_sum - 1.0 + 1e-8)
key_std = torch.sqrt(key_var)
key_thread = key_mean - scale * key_std
# if attention_prob[i] >= key_thread, then attention_prob[i]
# , otherwise "-inf"
inf_tensor = attention_prob.new_zeros(attention_prob.size()).detach()
inf_tensor[:] = float("-inf")
attention_weights_float = torch.where(
attention_prob < key_thread,
inf_tensor,
attention_weights.float(),
)
return attention_weights_float.type_as(attention_weights)
def layer_norm_backward_hook(module, grad_input, grad_output, clamp_value):
return tuple(torch.clamp(v, min=-clamp_value, max=clamp_value) for v in grad_input)
|