Spaces:
Runtime error
Runtime error
File size: 5,769 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
from typing import Dict, List, Optional
import torch
from fairseq.models import (
FairseqIncrementalDecoder,
FairseqLanguageModel,
register_model,
register_model_architecture,
)
logger = logging.getLogger(__name__)
DEFAULT_MAX_TARGET_POSITIONS = 1024
@register_model("hf_gpt2")
class HuggingFaceGPT2LanguageModel(FairseqLanguageModel):
def __init__(self, decoder):
super().__init__(decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--embed-dim', type=int, metavar='N',
help='embedding dimension')
parser.add_argument('--num-attention-heads', type=int, metavar='N',
help='num attention heads')
parser.add_argument('--num-layers', type=int, metavar='N',
help='num layers')
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability for all fully connected layers '
'in the embeddings, encoder, and pooler')
parser.add_argument('--attention-dropout', type=float, metavar='D',
help='dropout probability for attention weights')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
default_architecture(args)
return cls(HuggingFaceGPT2Decoder(args, task))
class HuggingFaceGPT2Decoder(FairseqIncrementalDecoder):
def __init__(self, args, task):
try:
from transformers import GPT2Config, GPT2LMHeadModel
except ImportError:
raise ImportError(
"\n\nPlease install huggingface/transformers with:"
"\n\n pip install transformers"
)
super().__init__(task.target_dictionary)
config = GPT2Config(
vocab_size=len(task.target_dictionary),
n_positions=args.max_target_positions + 1,
n_ctx=args.max_target_positions,
n_embd=args.embed_dim,
n_layer=args.num_layers,
n_head=args.num_attention_heads,
resid_pdrop=args.dropout,
embd_pdrop=args.dropout,
attn_pdrop=args.attention_dropout,
layer_norm_epsilon=1e-6,
)
self.model = GPT2LMHeadModel(config)
# set zero embedding for padding symbol
self.pad_idx = task.target_dictionary.pad()
self.model.transformer.wte.weight.data[self.pad_idx].zero_()
self.model.transformer.wpe.weight.data[0].zero_()
def forward(
self,
prev_output_tokens,
src_lengths=None,
incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
encoder_out=None,
):
features = self.extract_features(prev_output_tokens, incremental_state)
lm_logits = self.model.lm_head(features)
return (lm_logits,)
def extract_features(
self,
prev_output_tokens,
incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
):
if incremental_state:
past = self.get_incremental_state("past")
else:
past = None
# don't attend to padding symbols
attention_mask = prev_output_tokens.ne(self.pad_idx).int()
# set position ids to exclude padding symbols
position_ids = attention_mask * (
torch.arange(1, 1 + prev_output_tokens.size(1))
.to(prev_output_tokens)
.repeat(prev_output_tokens.size(0), 1)
)
outputs = self.model.transformer(
input_ids=prev_output_tokens,
past=past,
attention_mask=attention_mask,
position_ids=position_ids,
)
last_hidden_states = outputs[0]
if incremental_state:
self.set_incremental_state(incremental_state, "past", outputs[1])
return last_hidden_states
def max_positions(self):
return self.model.config.n_positions - 1
@register_model_architecture("hf_gpt2", "hf_gpt2")
def default_architecture(args):
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = getattr(
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
)
args.embed_dim = getattr(args, "embed_dim", 768)
args.num_attention_heads = getattr(args, "num_attention_heads", 12)
args.num_layers = getattr(args, "num_layers", 12)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
@register_model_architecture("hf_gpt2", "hf_gpt2_medium")
def hf_gpt2_medium(args):
args.embed_dim = getattr(args, "embed_dim", 1024)
args.num_attention_heads = getattr(args, "num_attention_heads", 16)
args.num_layers = getattr(args, "num_layers", 24)
default_architecture(args)
@register_model_architecture("hf_gpt2", "hf_gpt2_large")
def hf_gpt2_large(args):
args.embed_dim = getattr(args, "embed_dim", 1280)
args.num_attention_heads = getattr(args, "num_attention_heads", 20)
args.num_layers = getattr(args, "num_layers", 36)
default_architecture(args)
@register_model_architecture("hf_gpt2", "hf_gpt2_xl")
def hf_gpt2_xl(args):
args.embed_dim = getattr(args, "embed_dim", 1600)
args.num_attention_heads = getattr(args, "num_attention_heads", 25)
args.num_layers = getattr(args, "num_layers", 48)
default_architecture(args)
|