File size: 5,769 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import sys
from typing import Dict, List, Optional

import torch
from fairseq.models import (
    FairseqIncrementalDecoder,
    FairseqLanguageModel,
    register_model,
    register_model_architecture,
)


logger = logging.getLogger(__name__)


DEFAULT_MAX_TARGET_POSITIONS = 1024


@register_model("hf_gpt2")
class HuggingFaceGPT2LanguageModel(FairseqLanguageModel):
    def __init__(self, decoder):
        super().__init__(decoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--embed-dim', type=int, metavar='N',
                            help='embedding dimension')
        parser.add_argument('--num-attention-heads', type=int, metavar='N',
                            help='num attention heads')
        parser.add_argument('--num-layers', type=int, metavar='N',
                            help='num layers')
        parser.add_argument('--dropout', type=float, metavar='D',
                            help='dropout probability for all fully connected layers '
                                 'in the embeddings, encoder, and pooler')
        parser.add_argument('--attention-dropout', type=float, metavar='D',
                            help='dropout probability for attention weights')
        # fmt: on

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""
        default_architecture(args)
        return cls(HuggingFaceGPT2Decoder(args, task))


class HuggingFaceGPT2Decoder(FairseqIncrementalDecoder):
    def __init__(self, args, task):
        try:
            from transformers import GPT2Config, GPT2LMHeadModel
        except ImportError:
            raise ImportError(
                "\n\nPlease install huggingface/transformers with:"
                "\n\n  pip install transformers"
            )

        super().__init__(task.target_dictionary)

        config = GPT2Config(
            vocab_size=len(task.target_dictionary),
            n_positions=args.max_target_positions + 1,
            n_ctx=args.max_target_positions,
            n_embd=args.embed_dim,
            n_layer=args.num_layers,
            n_head=args.num_attention_heads,
            resid_pdrop=args.dropout,
            embd_pdrop=args.dropout,
            attn_pdrop=args.attention_dropout,
            layer_norm_epsilon=1e-6,
        )
        self.model = GPT2LMHeadModel(config)

        # set zero embedding for padding symbol
        self.pad_idx = task.target_dictionary.pad()
        self.model.transformer.wte.weight.data[self.pad_idx].zero_()
        self.model.transformer.wpe.weight.data[0].zero_()

    def forward(
        self,
        prev_output_tokens,
        src_lengths=None,
        incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
        encoder_out=None,
    ):
        features = self.extract_features(prev_output_tokens, incremental_state)
        lm_logits = self.model.lm_head(features)
        return (lm_logits,)

    def extract_features(
        self,
        prev_output_tokens,
        incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
    ):
        if incremental_state:
            past = self.get_incremental_state("past")
        else:
            past = None

        # don't attend to padding symbols
        attention_mask = prev_output_tokens.ne(self.pad_idx).int()

        # set position ids to exclude padding symbols
        position_ids = attention_mask * (
            torch.arange(1, 1 + prev_output_tokens.size(1))
            .to(prev_output_tokens)
            .repeat(prev_output_tokens.size(0), 1)
        )

        outputs = self.model.transformer(
            input_ids=prev_output_tokens,
            past=past,
            attention_mask=attention_mask,
            position_ids=position_ids,
        )
        last_hidden_states = outputs[0]

        if incremental_state:
            self.set_incremental_state(incremental_state, "past", outputs[1])

        return last_hidden_states

    def max_positions(self):
        return self.model.config.n_positions - 1


@register_model_architecture("hf_gpt2", "hf_gpt2")
def default_architecture(args):
    if getattr(args, "max_target_positions", None) is None:
        args.max_target_positions = getattr(
            args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
        )
    args.embed_dim = getattr(args, "embed_dim", 768)
    args.num_attention_heads = getattr(args, "num_attention_heads", 12)
    args.num_layers = getattr(args, "num_layers", 12)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)


@register_model_architecture("hf_gpt2", "hf_gpt2_medium")
def hf_gpt2_medium(args):
    args.embed_dim = getattr(args, "embed_dim", 1024)
    args.num_attention_heads = getattr(args, "num_attention_heads", 16)
    args.num_layers = getattr(args, "num_layers", 24)
    default_architecture(args)


@register_model_architecture("hf_gpt2", "hf_gpt2_large")
def hf_gpt2_large(args):
    args.embed_dim = getattr(args, "embed_dim", 1280)
    args.num_attention_heads = getattr(args, "num_attention_heads", 20)
    args.num_layers = getattr(args, "num_layers", 36)
    default_architecture(args)


@register_model_architecture("hf_gpt2", "hf_gpt2_xl")
def hf_gpt2_xl(args):
    args.embed_dim = getattr(args, "embed_dim", 1600)
    args.num_attention_heads = getattr(args, "num_attention_heads", 25)
    args.num_layers = getattr(args, "num_layers", 48)
    default_architecture(args)