File size: 20,003 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch
import torch.nn as nn
from omegaconf import II

from fairseq import utils
from fairseq.data.data_utils import compute_mask_indices
from fairseq.data.dictionary import Dictionary
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from fairseq.models.wav2vec.wav2vec2 import (
    EXTRACTOR_MODE_CHOICES,
    MASKING_DISTRIBUTION_CHOICES,
    LAYER_TYPE_CHOICES,
    ConvFeatureExtractionModel,
    TransformerEncoder,
)
from fairseq.modules import GradMultiply, LayerNorm
from fairseq.tasks.hubert_pretraining import (
    HubertPretrainingConfig,
    HubertPretrainingTask,
)

logger = logging.getLogger(__name__)


@dataclass
class HubertConfig(FairseqDataclass):
    label_rate: float = II("task.label_rate")

    extractor_mode: EXTRACTOR_MODE_CHOICES = field(
        default="default",
        metadata={
            "help": "mode for feature extractor. default has a single group "
            "norm with d groups in the first conv block, whereas layer_norm "
            "has layer norms in every block (meant to use with normalize=True)"
        },
    )
    encoder_layers: int = field(
        default=12, metadata={"help": "num encoder layers in the transformer"}
    )
    encoder_embed_dim: int = field(
        default=768, metadata={"help": "encoder embedding dimension"}
    )
    encoder_ffn_embed_dim: int = field(
        default=3072, metadata={"help": "encoder embedding dimension for FFN"}
    )
    encoder_attention_heads: int = field(
        default=12, metadata={"help": "num encoder attention heads"}
    )
    activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
        default="gelu", metadata={"help": "activation function to use"}
    )
    layer_type: LAYER_TYPE_CHOICES = field(
        default="transformer", metadata={"help": "layer type in encoder"}
    )

    # dropouts
    dropout: float = field(
        default=0.1,
        metadata={"help": "dropout probability for the transformer"},
    )
    attention_dropout: float = field(
        default=0.1,
        metadata={"help": "dropout probability for attention weights"},
    )
    activation_dropout: float = field(
        default=0.0,
        metadata={"help": "dropout probability after activation in FFN"},
    )
    encoder_layerdrop: float = field(
        default=0.0,
        metadata={"help": "probability of dropping a tarnsformer layer"},
    )
    dropout_input: float = field(
        default=0.0,
        metadata={"help": "dropout to apply to the input (after feat extr)"},
    )
    dropout_features: float = field(
        default=0.0,
        metadata={"help": "dropout to apply to the features (after feat extr)"},
    )

    final_dim: int = field(
        default=0,
        metadata={
            "help": "project final representations and targets to this many "
            "dimensions. set to encoder_embed_dim is <= 0"
        },
    )
    untie_final_proj: bool = field(
        default=False,
        metadata={"help": "use separate projection for each target"},
    )
    layer_norm_first: bool = field(
        default=False,
        metadata={"help": "apply layernorm first in the transformer"},
    )
    conv_feature_layers: str = field(
        default="[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2",
        metadata={
            "help": "string describing convolutional feature extraction "
            "layers in form of a python list that contains "
            "[(dim, kernel_size, stride), ...]"
        },
    )
    conv_bias: bool = field(
        default=False, metadata={"help": "include bias in conv encoder"}
    )
    logit_temp: float = field(
        default=0.1, metadata={"help": "temperature to divide logits by"}
    )
    target_glu: bool = field(
        default=False, metadata={"help": "adds projection + glu to targets"}
    )
    feature_grad_mult: float = field(
        default=1.0,
        metadata={"help": "multiply feature extractor var grads by this"},
    )

    # masking
    mask_length: int = field(default=10, metadata={"help": "mask length"})
    mask_prob: float = field(
        default=0.65,
        metadata={"help": "probability of replacing a token with mask"},
    )
    mask_selection: MASKING_DISTRIBUTION_CHOICES = field(
        default="static", metadata={"help": "how to choose mask length"}
    )
    mask_other: float = field(
        default=0,
        metadata={
            "help": "secondary mask argument "
            "(used for more complex distributions), "
            "see help in compute_mask_indicesh"
        },
    )
    no_mask_overlap: bool = field(
        default=False, metadata={"help": "whether to allow masks to overlap"}
    )
    mask_min_space: int = field(
        default=1,
        metadata={"help": "min space between spans (if no overlap is enabled)"},
    )

    # channel masking
    mask_channel_length: int = field(
        default=10,
        metadata={"help": "length of the mask for features (channels)"},
    )
    mask_channel_prob: float = field(
        default=0.0,
        metadata={"help": "probability of replacing a feature with 0"},
    )
    mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field(
        default="static",
        metadata={"help": "how to choose mask length for channel masking"},
    )
    mask_channel_other: float = field(
        default=0,
        metadata={
            "help": "secondary mask argument "
            "(used for more complex distributions), "
            "see help in compute_mask_indicesh"
        },
    )
    no_mask_channel_overlap: bool = field(
        default=False,
        metadata={"help": "whether to allow channel masks to overlap"},
    )
    mask_channel_min_space: int = field(
        default=1,
        metadata={"help": "min space between spans (if no overlap is enabled)"},
    )

    # positional embeddings
    conv_pos: int = field(
        default=128,
        metadata={"help": "number of filters for convolutional positional embeddings"},
    )
    conv_pos_groups: int = field(
        default=16,
        metadata={"help": "number of groups for convolutional positional embedding"},
    )

    latent_temp: Tuple[float, float, float] = field(
        default=(2, 0.5, 0.999995),
        metadata={"help": "legacy (to be removed)"},
    )

    # loss computation
    skip_masked: bool = field(
        default=False,
        metadata={"help": "skip computing losses over masked frames"},
    )
    skip_nomask: bool = field(
        default=False,
        metadata={"help": "skip computing losses over unmasked frames"},
    )

    checkpoint_activations: bool = field(
        default=False,
        metadata={"help": "recompute activations and save memory for extra compute"},
    )

    # FP16 optimization
    required_seq_len_multiple: int = field(
        default=2,
        metadata={
            "help": "pad the input to encoder such that the sequence length is divisible by multiple"
        },
    )

    # Conformer
    depthwise_conv_kernel_size: int = field(
        default=31,
        metadata={
            "help": "depthwise-conv-kernel-size for convolution in conformer layer"
        },
    )
    attn_type: str = field(
        default="",
        metadata={"help": "if espnet use ESPNET MHA"},
    )
    pos_enc_type: str = field(
        default="abs",
        metadata={"help": "Positional encoding type to use in conformer"},
    )
    fp16: bool = field(default=False, metadata={"help": "If fp16 is being used"})


@register_model("hubert", dataclass=HubertConfig)
class HubertModel(BaseFairseqModel):
    def __init__(
        self,
        cfg: HubertConfig,
        task_cfg: HubertPretrainingConfig,
        dictionaries: List[Dictionary],
    ) -> None:
        super().__init__()
        logger.info(f"HubertModel Config: {cfg}")

        feature_enc_layers = eval(cfg.conv_feature_layers)  # noqa
        self.embed = feature_enc_layers[-1][0]

        self.feature_extractor = ConvFeatureExtractionModel(
            conv_layers=feature_enc_layers,
            dropout=0.0,
            mode=cfg.extractor_mode,
            conv_bias=cfg.conv_bias,
        )
        feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers])
        self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / task_cfg.sample_rate

        self.post_extract_proj = (
            nn.Linear(self.embed, cfg.encoder_embed_dim)
            if self.embed != cfg.encoder_embed_dim
            else None
        )

        self.mask_prob = cfg.mask_prob
        self.mask_selection = cfg.mask_selection
        self.mask_other = cfg.mask_other
        self.mask_length = cfg.mask_length
        self.no_mask_overlap = cfg.no_mask_overlap
        self.mask_min_space = cfg.mask_min_space

        self.mask_channel_prob = cfg.mask_channel_prob
        self.mask_channel_selection = cfg.mask_channel_selection
        self.mask_channel_other = cfg.mask_channel_other
        self.mask_channel_length = cfg.mask_channel_length
        self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
        self.mask_channel_min_space = cfg.mask_channel_min_space

        self.dropout_input = nn.Dropout(cfg.dropout_input)
        self.dropout_features = nn.Dropout(cfg.dropout_features)

        self.feature_grad_mult = cfg.feature_grad_mult
        self.logit_temp = cfg.logit_temp
        self.skip_masked = cfg.skip_masked
        self.skip_nomask = cfg.skip_nomask

        final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim

        self.mask_emb = nn.Parameter(
            torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
        )

        self.encoder = TransformerEncoder(cfg)
        self.layer_norm = LayerNorm(self.embed)

        self.target_glu = None
        if cfg.target_glu:
            self.target_glu = nn.Sequential(
                nn.Linear(final_dim, final_dim * 2), nn.GLU()
            )

        self.untie_final_proj = cfg.untie_final_proj
        if self.untie_final_proj:
            self.final_proj = nn.Linear(
                cfg.encoder_embed_dim, final_dim * len(dictionaries)
            )
        else:
            self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim)

        # modules below are not needed during fine-tuning
        if any([d is None for d in dictionaries]):
            logger.info("cannot find dictionary. assume will be used for fine-tuning")
        else:
            self.num_classes = [len(d) for d in dictionaries]
            self.label_embs_concat = nn.Parameter(
                torch.FloatTensor(sum(self.num_classes), final_dim)
            )
            nn.init.uniform_(self.label_embs_concat)

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""

        super().upgrade_state_dict_named(state_dict, name)
        return state_dict

    @classmethod
    def build_model(cls, cfg: HubertConfig, task: HubertPretrainingTask):
        """Build a new model instance."""

        model = HubertModel(cfg, task.cfg, task.dictionaries)
        return model

    def apply_mask(self, x, padding_mask, target_list):
        B, T, C = x.shape
        if self.mask_prob > 0:
            mask_indices = compute_mask_indices(
                (B, T),
                padding_mask,
                self.mask_prob,
                self.mask_length,
                self.mask_selection,
                self.mask_other,
                min_masks=2,
                no_overlap=self.no_mask_overlap,
                min_space=self.mask_min_space,
            )
            mask_indices = torch.from_numpy(mask_indices).to(x.device)
            x[mask_indices] = self.mask_emb
        else:
            mask_indices = None

        if self.mask_channel_prob > 0:
            mask_channel_indices = compute_mask_indices(
                (B, C),
                None,
                self.mask_channel_prob,
                self.mask_channel_length,
                self.mask_channel_selection,
                self.mask_channel_other,
                no_overlap=self.no_mask_channel_overlap,
                min_space=self.mask_channel_min_space,
            )
            mask_channel_indices = (
                torch.from_numpy(mask_channel_indices)
                .to(x.device)
                .unsqueeze(1)
                .expand(-1, T, -1)
            )
            x[mask_channel_indices] = 0

        return x, mask_indices

    def compute_nce(self, x, pos, negs):
        neg_is_pos = (pos == negs).all(-1)
        pos = pos.unsqueeze(0)
        targets = torch.cat([pos, negs], dim=0)

        logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x)
        logits /= self.logit_temp
        if neg_is_pos.any():
            logits[1:][neg_is_pos] = float("-inf")
        logits = logits.transpose(0, 1)  # (num_x, num_cls+1)
        return logits

    def forward_features(self, source: torch.Tensor) -> torch.Tensor:
        if self.feature_grad_mult > 0:
            features = self.feature_extractor(source)
            if self.feature_grad_mult != 1.0:
                features = GradMultiply.apply(features, self.feature_grad_mult)
        else:
            with torch.no_grad():
                features = self.feature_extractor(source)
        return features

    def forward_targets(
        self,
        features: torch.Tensor,
        target_list: List[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Trim features to ensure labels exist and then get aligned labels
        feat_tsz = features.size(2)
        targ_tsz = min([t.size(1) for t in target_list])
        if self.feat2tar_ratio * feat_tsz > targ_tsz:
            feat_tsz = int(targ_tsz / self.feat2tar_ratio)
            features = features[..., :feat_tsz]
        target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio
        target_list = [t[:, target_inds.long()] for t in target_list]
        return features, target_list

    def forward_padding_mask(
        self,
        features: torch.Tensor,
        padding_mask: torch.Tensor,
    ) -> torch.Tensor:
        extra = padding_mask.size(1) % features.size(1)
        if extra > 0:
            padding_mask = padding_mask[:, :-extra]
        padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1)
        padding_mask = padding_mask.all(-1)
        return padding_mask

    def forward(
        self,
        source: torch.Tensor,
        target_list: Optional[List[torch.Tensor]] = None,
        padding_mask: Optional[torch.Tensor] = None,
        mask: bool = True,
        features_only: bool = False,
        output_layer: Optional[int] = None,
    ) -> Dict[str, torch.Tensor]:
        """output layer is 1-based"""
        features = self.forward_features(source)
        if target_list is not None:
            features, target_list = self.forward_targets(features, target_list)

        features_pen = features.float().pow(2).mean()

        features = features.transpose(1, 2)
        features = self.layer_norm(features)
        unmasked_features = features.clone()

        if padding_mask is not None:
            padding_mask = self.forward_padding_mask(features, padding_mask)

        if self.post_extract_proj is not None:
            features = self.post_extract_proj(features)

        features = self.dropout_input(features)
        unmasked_features = self.dropout_features(unmasked_features)

        if mask:
            x, mask_indices = self.apply_mask(features, padding_mask, target_list)
        else:
            x = features
            mask_indices = None

        # feature: (B, T, D), float
        # target: (B, T), long
        # x: (B, T, D), float
        # padding_mask: (B, T), bool
        # mask_indices: (B, T), bool
        x, _ = self.encoder(
            x,
            padding_mask=padding_mask,
            layer=None if output_layer is None else output_layer - 1,
        )

        if features_only:
            return {"x": x, "padding_mask": padding_mask, "features": features}

        def compute_pred(proj_x, target, label_embs):
            # compute logits for the i-th label set
            y = torch.index_select(label_embs, 0, target.long())
            negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1)
            if self.target_glu:
                y = self.target_glu(y)
                negs = self.target_glu(negs)
            # proj_x: (S, D)
            # y: (S, D)
            # negs: (Neg, S, D)
            return self.compute_nce(proj_x, y, negs)

        label_embs_list = self.label_embs_concat.split(self.num_classes, 0)

        if not self.skip_masked:
            masked_indices = torch.logical_and(~padding_mask, mask_indices)
            proj_x_m = self.final_proj(x[masked_indices])
            if self.untie_final_proj:
                proj_x_m_list = proj_x_m.chunk(len(target_list), dim=-1)
            else:
                proj_x_m_list = [proj_x_m for _ in range(len(target_list))]
            logit_m_list = [
                compute_pred(proj_x_m, t[masked_indices], label_embs_list[i])
                for i, (proj_x_m, t) in enumerate(zip(proj_x_m_list, target_list))
            ]
        else:
            logit_m_list = [None for _ in target_list]

        if not self.skip_nomask:
            nomask_indices = torch.logical_and(~padding_mask, ~mask_indices)
            proj_x_u = self.final_proj(x[nomask_indices])
            if self.untie_final_proj:
                proj_x_u_list = proj_x_u.chunk(len(target_list), dim=-1)
            else:
                proj_x_u_list = [proj_x_u for _ in range(len(target_list))]

            logit_u_list = [
                compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i])
                for i, (proj_x_u, t) in enumerate(zip(proj_x_u_list, target_list))
            ]
        else:
            logit_u_list = [None for _ in target_list]

        result = {
            "logit_m_list": logit_m_list,
            "logit_u_list": logit_u_list,
            "padding_mask": padding_mask,
            "features_pen": features_pen,
        }
        return result

    def extract_features(
        self,
        source: torch.Tensor,
        padding_mask: Optional[torch.Tensor] = None,
        mask: bool = False,
        ret_conv: bool = False,
        output_layer: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        res = self.forward(
            source,
            padding_mask=padding_mask,
            mask=mask,
            features_only=True,
            output_layer=output_layer,
        )
        feature = res["features"] if ret_conv else res["x"]
        return feature, res["padding_mask"]

    def get_logits(self, net_output, is_masked=True):
        if is_masked:
            logits_list = net_output["logit_m_list"]
        else:
            logits_list = net_output["logit_u_list"]
        logits_list = [x.float() for x in logits_list if x is not None]
        return logits_list

    def get_targets(self, net_output, is_masked=True):
        logits_list = self.get_logits(net_output, is_masked)
        targets_list = [x.new_zeros(x.size(0), dtype=torch.long) for x in logits_list]
        return targets_list

    def get_extra_losses(self, net_output):
        extra_losses = []
        names = []

        if "features_pen" in net_output:
            extra_losses.append(net_output["features_pen"])
            names.append("features_pen")

        return extra_losses, names

    def remove_pretraining_modules(self):
        self.target_glu = None
        self.final_proj = None