Update app.py
Browse files
app.py
CHANGED
|
@@ -19,8 +19,7 @@ from dataset.dataset import *
|
|
| 19 |
|
| 20 |
|
| 21 |
model = ResNet18(20, None)
|
| 22 |
-
model = model.load_from_checkpoint("resnet18.ckpt", map_location=torch.device("cpu"))
|
| 23 |
-
model.eval()
|
| 24 |
|
| 25 |
dataloader_args = dict(shuffle=True, batch_size=64)
|
| 26 |
_, test_transforms = get_transforms(mu, std)
|
|
@@ -38,7 +37,7 @@ def upload_image_inference(input_img, n_top_classes, transparency):
|
|
| 38 |
|
| 39 |
org_img = input_img.copy()
|
| 40 |
|
| 41 |
-
input_img =
|
| 42 |
input_img = input_img.unsqueeze(0)
|
| 43 |
|
| 44 |
outputs = model(input_img)
|
|
@@ -157,7 +156,7 @@ with gr.Blocks() as gradcam:
|
|
| 157 |
|
| 158 |
upload_output = [gr.Label(label='Top Classes'),
|
| 159 |
gr.Gallery(label="Image | CAM | Image+CAM",
|
| 160 |
-
show_label=True,
|
| 161 |
rows=[1],
|
| 162 |
object_fit="contain",
|
| 163 |
height="auto")]
|
|
@@ -179,7 +178,7 @@ with gr.Blocks() as gradcam:
|
|
| 179 |
gr.Slider(0, 1, value=0.6, label='Transparency')]
|
| 180 |
|
| 181 |
image_output21 = gr.Gallery(label="Images - Grad-CAM (correct)",
|
| 182 |
-
show_label=True,
|
| 183 |
button21 = gr.Button("View Images")
|
| 184 |
|
| 185 |
with gr.Column():
|
|
@@ -188,7 +187,7 @@ with gr.Blocks() as gradcam:
|
|
| 188 |
gr.Slider(0, 1, value=0.6, label='Transparency')]
|
| 189 |
|
| 190 |
image_output22 = gr.Gallery(label="Images - Grad-CAM (Misclassified)",
|
| 191 |
-
show_label=True,
|
| 192 |
button22 = gr.Button("View Images")
|
| 193 |
|
| 194 |
button1.click(upload_image_inference, inputs=upload_input, outputs=upload_output)
|
|
@@ -197,4 +196,4 @@ with gr.Blocks() as gradcam:
|
|
| 197 |
|
| 198 |
|
| 199 |
|
| 200 |
-
gradcam.launch()
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
model = ResNet18(20, None)
|
| 22 |
+
model = model.load_from_checkpoint("/content/drive/MyDrive/ERAV1/S12/resnet18.ckpt", map_location=torch.device("cpu"))
|
|
|
|
| 23 |
|
| 24 |
dataloader_args = dict(shuffle=True, batch_size=64)
|
| 25 |
_, test_transforms = get_transforms(mu, std)
|
|
|
|
| 37 |
|
| 38 |
org_img = input_img.copy()
|
| 39 |
|
| 40 |
+
input_img = test_transforms(image=org_img)['image']
|
| 41 |
input_img = input_img.unsqueeze(0)
|
| 42 |
|
| 43 |
outputs = model(input_img)
|
|
|
|
| 156 |
|
| 157 |
upload_output = [gr.Label(label='Top Classes'),
|
| 158 |
gr.Gallery(label="Image | CAM | Image+CAM",
|
| 159 |
+
show_label=True, min_width=80).style(columns=[3],
|
| 160 |
rows=[1],
|
| 161 |
object_fit="contain",
|
| 162 |
height="auto")]
|
|
|
|
| 178 |
gr.Slider(0, 1, value=0.6, label='Transparency')]
|
| 179 |
|
| 180 |
image_output21 = gr.Gallery(label="Images - Grad-CAM (correct)",
|
| 181 |
+
show_label=True, min_width=80)
|
| 182 |
button21 = gr.Button("View Images")
|
| 183 |
|
| 184 |
with gr.Column():
|
|
|
|
| 187 |
gr.Slider(0, 1, value=0.6, label='Transparency')]
|
| 188 |
|
| 189 |
image_output22 = gr.Gallery(label="Images - Grad-CAM (Misclassified)",
|
| 190 |
+
show_label=True, min_width=80)
|
| 191 |
button22 = gr.Button("View Images")
|
| 192 |
|
| 193 |
button1.click(upload_image_inference, inputs=upload_input, outputs=upload_output)
|
|
|
|
| 196 |
|
| 197 |
|
| 198 |
|
| 199 |
+
gradcam.launch()
|