Create model/network.py
Browse files- model/network.py +138 -0
model/network.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
import pytorch_lightning as pl
|
| 5 |
+
import torchmetrics
|
| 6 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
| 7 |
+
from torchmetrics.functional import accuracy
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class ResBlock(nn.Module):
|
| 11 |
+
|
| 12 |
+
def __init__(self, in_channel, out_channel, stride=1):
|
| 13 |
+
super(ResBlock, self).__init__()
|
| 14 |
+
self.conv = nn.Sequential(
|
| 15 |
+
nn.Conv2d(in_channel, in_channel, kernel_size=3, stride=1, padding=1, bias=False),
|
| 16 |
+
nn.BatchNorm2d(in_channel),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
|
| 19 |
+
nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False),
|
| 20 |
+
nn.BatchNorm2d(out_channel),
|
| 21 |
+
nn.ReLU(),
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
return(self.conv(x))
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class ResNet18(pl.LightningModule):
|
| 30 |
+
def __init__(self, train_loader_len, criterion, num_classes=10, lr=0.001, max_lr=1.45E-03):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.save_hyperparameters(ignore=['criterion'])
|
| 33 |
+
|
| 34 |
+
self.criterion = criterion
|
| 35 |
+
self.train_loader_len = train_loader_len
|
| 36 |
+
self.accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=self.hparams.num_classes)
|
| 37 |
+
|
| 38 |
+
self.prep_layer = nn.Sequential(
|
| 39 |
+
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
|
| 40 |
+
nn.BatchNorm2d(64),
|
| 41 |
+
nn.ReLU()
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
self.layer_one = nn.Sequential(
|
| 45 |
+
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False),
|
| 46 |
+
nn.MaxPool2d(2,2),
|
| 47 |
+
nn.BatchNorm2d(128),
|
| 48 |
+
nn.ReLU()
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
self.res_block1 = ResBlock(128, 128)
|
| 52 |
+
|
| 53 |
+
self.layer_two = nn.Sequential(
|
| 54 |
+
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False),
|
| 55 |
+
nn.MaxPool2d(2,2),
|
| 56 |
+
nn.BatchNorm2d(256),
|
| 57 |
+
nn.ReLU()
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
self.layer_three = nn.Sequential(
|
| 61 |
+
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=False),
|
| 62 |
+
nn.MaxPool2d(2,2),
|
| 63 |
+
nn.BatchNorm2d(512),
|
| 64 |
+
nn.ReLU()
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
self.res_block2 = ResBlock(512, 512)
|
| 68 |
+
|
| 69 |
+
self.max_pool = nn.MaxPool2d(4,4)
|
| 70 |
+
self.fc = nn.Linear(512, num_classes, bias=False)
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
x = self.prep_layer(x)
|
| 74 |
+
x = self.layer_one(x)
|
| 75 |
+
R1 = self.res_block1(x)
|
| 76 |
+
x = x + R1
|
| 77 |
+
|
| 78 |
+
x = self.layer_two(x)
|
| 79 |
+
|
| 80 |
+
x = self.layer_three(x)
|
| 81 |
+
R2 = self.res_block2(x)
|
| 82 |
+
x = x + R2
|
| 83 |
+
|
| 84 |
+
x = self.max_pool(x)
|
| 85 |
+
|
| 86 |
+
x = x.view(x.size(0), -1)
|
| 87 |
+
x = self.fc(x)
|
| 88 |
+
|
| 89 |
+
return(x)
|
| 90 |
+
|
| 91 |
+
def configure_optimizers(self):
|
| 92 |
+
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=1e-4)
|
| 93 |
+
scheduler = OneCycleLR(
|
| 94 |
+
optimizer,
|
| 95 |
+
max_lr=self.hparams.max_lr,
|
| 96 |
+
epochs=self.trainer.max_epochs,
|
| 97 |
+
steps_per_epoch=self.train_loader_len,
|
| 98 |
+
pct_start=5/self.trainer.max_epochs,
|
| 99 |
+
div_factor=100,
|
| 100 |
+
three_phase=False,
|
| 101 |
+
)
|
| 102 |
+
if self.hparams.max_lr==1.45E-03:
|
| 103 |
+
return(optimizer)
|
| 104 |
+
else:
|
| 105 |
+
return([optimizer], [scheduler])
|
| 106 |
+
|
| 107 |
+
def training_step(self, train_batch, batch_idx):
|
| 108 |
+
data, target = train_batch
|
| 109 |
+
y_pred = self(data)
|
| 110 |
+
loss = self.criterion(y_pred, target)
|
| 111 |
+
|
| 112 |
+
pred = torch.argmax(y_pred.squeeze(), dim=1)
|
| 113 |
+
acc = accuracy(pred, target, task="multiclass", num_classes=self.hparams.num_classes)
|
| 114 |
+
|
| 115 |
+
self.log('train_loss', loss, prog_bar=True, on_step=False, on_epoch=True)
|
| 116 |
+
self.log('train_acc', acc, prog_bar=True, on_step=False, on_epoch=True)
|
| 117 |
+
|
| 118 |
+
return(loss)
|
| 119 |
+
|
| 120 |
+
def validation_step(self, batch, batch_idx):
|
| 121 |
+
return(self.evaluate(batch, 'val'))
|
| 122 |
+
|
| 123 |
+
def test_step(self, batch, batch_idx):
|
| 124 |
+
return(self.evaluate(batch, 'test'))
|
| 125 |
+
|
| 126 |
+
def evaluate(self, batch, stage=None):
|
| 127 |
+
data, target = batch
|
| 128 |
+
y_pred = self(data)
|
| 129 |
+
|
| 130 |
+
loss = self.criterion(y_pred, target).item()
|
| 131 |
+
pred = torch.argmax(y_pred.squeeze(), dim=1)
|
| 132 |
+
acc = accuracy(pred, target, task="multiclass", num_classes=self.hparams.num_classes)
|
| 133 |
+
|
| 134 |
+
if stage:
|
| 135 |
+
self.log(f"{stage}_loss", loss, prog_bar=True, on_step=False, on_epoch=True)
|
| 136 |
+
self.log(f"{stage}_acc", acc, prog_bar=True, on_step=False, on_epoch=True)
|
| 137 |
+
|
| 138 |
+
return pred, target
|