Upload 2 files
Browse files- app.py +154 -0
- requirements.txt +58 -0
app.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
from bs4 import BeautifulSoup
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Initialize session state for model and tokenizer
|
| 9 |
+
if 'model' not in st.session_state:
|
| 10 |
+
st.session_state.model = None
|
| 11 |
+
if 'tokenizer' not in st.session_state:
|
| 12 |
+
st.session_state.tokenizer = None
|
| 13 |
+
|
| 14 |
+
@st.cache_resource
|
| 15 |
+
def load_model():
|
| 16 |
+
try:
|
| 17 |
+
# Check if CUDA is available
|
| 18 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 19 |
+
|
| 20 |
+
# Load the model
|
| 21 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-base')
|
| 22 |
+
|
| 23 |
+
# Load the saved weights with appropriate map_location
|
| 24 |
+
checkpoint = torch.load('abstractive-model-sihanas.pth', map_location=device)
|
| 25 |
+
|
| 26 |
+
model.load_state_dict(checkpoint)
|
| 27 |
+
model.to(device)
|
| 28 |
+
|
| 29 |
+
# Load tokenizer
|
| 30 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
| 31 |
+
|
| 32 |
+
return model, tokenizer, device
|
| 33 |
+
|
| 34 |
+
except Exception as e:
|
| 35 |
+
st.error(f"Error loading model: {str(e)}")
|
| 36 |
+
return None, None, None
|
| 37 |
+
|
| 38 |
+
def clean_text(text):
|
| 39 |
+
"""Clean and preprocess the input text"""
|
| 40 |
+
# Remove extra whitespace
|
| 41 |
+
text = ' '.join(text.split())
|
| 42 |
+
# Remove very long words (likely garbage)
|
| 43 |
+
text = ' '.join(word for word in text.split() if len(word) < 100)
|
| 44 |
+
return text
|
| 45 |
+
|
| 46 |
+
def summarize_text(text, model, tokenizer, device):
|
| 47 |
+
try:
|
| 48 |
+
# Clean the text
|
| 49 |
+
cleaned_text = clean_text(text)
|
| 50 |
+
|
| 51 |
+
# Tokenize and generate summary
|
| 52 |
+
inputs = tokenizer.encode("summarize: " + cleaned_text,
|
| 53 |
+
return_tensors='pt',
|
| 54 |
+
max_length=512,
|
| 55 |
+
truncation=True).to(device)
|
| 56 |
+
|
| 57 |
+
summary_ids = model.generate(
|
| 58 |
+
inputs,
|
| 59 |
+
max_length=150,
|
| 60 |
+
min_length=40,
|
| 61 |
+
num_beams=4,
|
| 62 |
+
length_penalty=2.0,
|
| 63 |
+
early_stopping=True
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 67 |
+
return summary
|
| 68 |
+
|
| 69 |
+
except Exception as e:
|
| 70 |
+
st.error(f"Error in summarization: {str(e)}")
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
def fetch_article(url):
|
| 74 |
+
"""Fetch article content and metadata from URL"""
|
| 75 |
+
try:
|
| 76 |
+
headers = {
|
| 77 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 78 |
+
}
|
| 79 |
+
response = requests.get(url, headers=headers, timeout=10)
|
| 80 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 81 |
+
|
| 82 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 83 |
+
|
| 84 |
+
# Extract metadata
|
| 85 |
+
title = soup.find('meta', property='og:title') or soup.title
|
| 86 |
+
title = title.get('content', '').strip() if title else 'No title found'
|
| 87 |
+
|
| 88 |
+
authors = soup.find('meta', {'name': 'author'})
|
| 89 |
+
authors = authors.get('content', '').strip() if authors else 'No author information'
|
| 90 |
+
|
| 91 |
+
publish_date = soup.find('meta', {'property': 'article:published_time'})
|
| 92 |
+
publish_date = publish_date.get('content', '').strip() if publish_date else 'No publish date found'
|
| 93 |
+
|
| 94 |
+
publisher = soup.find('meta', {'property': 'og:site_name'})
|
| 95 |
+
publisher = publisher.get('content', '').strip() if publisher else 'No publisher information'
|
| 96 |
+
|
| 97 |
+
# Remove scripts, styles, and navigation elements
|
| 98 |
+
for element in soup(['script', 'style', 'nav', 'header', 'footer']):
|
| 99 |
+
element.decompose()
|
| 100 |
+
|
| 101 |
+
text = soup.get_text(separator=' ', strip=True)
|
| 102 |
+
|
| 103 |
+
return title, authors, publish_date, publisher, text
|
| 104 |
+
|
| 105 |
+
except requests.exceptions.RequestException as e:
|
| 106 |
+
st.error(f"Error fetching the article: {str(e)}")
|
| 107 |
+
return None, None, None, None, None
|
| 108 |
+
|
| 109 |
+
def main():
|
| 110 |
+
st.title("News Article Summarizer")
|
| 111 |
+
st.write("Enter a news article URL to get a summary.")
|
| 112 |
+
|
| 113 |
+
# Load model and tokenizer
|
| 114 |
+
model, tokenizer, device = load_model()
|
| 115 |
+
|
| 116 |
+
if model is None or tokenizer is None:
|
| 117 |
+
st.error("Failed to load the model. Please check your model file and dependencies.")
|
| 118 |
+
return
|
| 119 |
+
|
| 120 |
+
# URL input
|
| 121 |
+
url = st.text_input("News Article URL")
|
| 122 |
+
|
| 123 |
+
if st.button("Summarize"):
|
| 124 |
+
if not url:
|
| 125 |
+
st.warning("Please enter a URL")
|
| 126 |
+
return
|
| 127 |
+
|
| 128 |
+
with st.spinner("Fetching article and generating summary..."):
|
| 129 |
+
# Fetch article
|
| 130 |
+
title, authors, publish_date, publisher, article_text = fetch_article(url)
|
| 131 |
+
|
| 132 |
+
if article_text:
|
| 133 |
+
# Display metadata
|
| 134 |
+
st.write(f"**Title**: {title}")
|
| 135 |
+
st.write(f"**Authors**: {authors}")
|
| 136 |
+
st.write(f"**Publish Date**: {publish_date}")
|
| 137 |
+
st.write(f"**Publisher**: {publisher}")
|
| 138 |
+
|
| 139 |
+
# Generate summary
|
| 140 |
+
summary = summarize_text(article_text, model, tokenizer, device)
|
| 141 |
+
|
| 142 |
+
if summary:
|
| 143 |
+
st.success("Summary generated successfully!")
|
| 144 |
+
st.write("### Summary")
|
| 145 |
+
st.write(summary)
|
| 146 |
+
|
| 147 |
+
# Display original text (collapsed)
|
| 148 |
+
with st.expander("Show original article"):
|
| 149 |
+
st.write(article_text)
|
| 150 |
+
else:
|
| 151 |
+
st.error("Failed to fetch the article. Please check the URL and try again.")
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair==5.5.0
|
| 2 |
+
attrs==24.2.0
|
| 3 |
+
beautifulsoup4==4.12.3
|
| 4 |
+
blinker==1.9.0
|
| 5 |
+
bs4==0.0.2
|
| 6 |
+
cachetools==5.5.0
|
| 7 |
+
certifi==2024.8.30
|
| 8 |
+
charset-normalizer==3.4.0
|
| 9 |
+
click==8.1.7
|
| 10 |
+
colorama==0.4.6
|
| 11 |
+
filelock==3.16.1
|
| 12 |
+
fsspec==2024.10.0
|
| 13 |
+
gitdb==4.0.11
|
| 14 |
+
GitPython==3.1.43
|
| 15 |
+
huggingface-hub==0.26.5
|
| 16 |
+
idna==3.10
|
| 17 |
+
jinja2==3.1.4
|
| 18 |
+
jsonschema==4.23.0
|
| 19 |
+
jsonschema-specifications==2024.10.1
|
| 20 |
+
markdown-it-py==3.0.0
|
| 21 |
+
MarkupSafe==3.0.2
|
| 22 |
+
mdurl==0.1.2
|
| 23 |
+
mpmath==1.3.0
|
| 24 |
+
narwhals==1.16.0
|
| 25 |
+
networkx==3.2.1
|
| 26 |
+
numpy==2.0.2
|
| 27 |
+
packaging==24.2
|
| 28 |
+
pandas==2.2.3
|
| 29 |
+
pillow==11.0.0
|
| 30 |
+
protobuf==5.29.1
|
| 31 |
+
pyarrow==18.1.0
|
| 32 |
+
pydeck==0.9.1
|
| 33 |
+
pygments==2.18.0
|
| 34 |
+
python-dateutil==2.9.0.post0
|
| 35 |
+
pytz==2024.2
|
| 36 |
+
PyYAML==6.0.2
|
| 37 |
+
referencing==0.35.1
|
| 38 |
+
regex==2024.11.6
|
| 39 |
+
requests==2.32.3
|
| 40 |
+
rich==13.9.4
|
| 41 |
+
rpds-py==0.22.3
|
| 42 |
+
safetensors==0.4.5
|
| 43 |
+
six==1.17.0
|
| 44 |
+
smmap==5.0.1
|
| 45 |
+
soupsieve==2.6
|
| 46 |
+
streamlit==1.40.2
|
| 47 |
+
sympy==1.13.1
|
| 48 |
+
tenacity==9.0.0
|
| 49 |
+
tokenizers==0.21.0
|
| 50 |
+
toml==0.10.2
|
| 51 |
+
torch==2.5.1
|
| 52 |
+
tornado==6.4.2
|
| 53 |
+
tqdm==4.67.1
|
| 54 |
+
transformers==4.47.0
|
| 55 |
+
typing-extensions==4.12.2
|
| 56 |
+
tzdata==2024.2
|
| 57 |
+
urllib3==2.2.3
|
| 58 |
+
watchdog==6.0.0
|