Spaces:
Paused
Paused
| ###################################################################### | |
| # /v1/files Endpoints | |
| # Equivalent of https://platform.openai.com/docs/api-reference/files | |
| ###################################################################### | |
| import asyncio | |
| import traceback | |
| from typing import Optional, cast, get_args | |
| import httpx | |
| from fastapi import ( | |
| APIRouter, | |
| Depends, | |
| File, | |
| Form, | |
| HTTPException, | |
| Request, | |
| Response, | |
| UploadFile, | |
| status, | |
| ) | |
| import litellm | |
| from litellm import CreateFileRequest, get_secret_str | |
| from litellm._logging import verbose_proxy_logger | |
| from litellm.proxy._types import * | |
| from litellm.proxy.auth.user_api_key_auth import user_api_key_auth | |
| from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing | |
| from litellm.proxy.common_utils.openai_endpoint_utils import ( | |
| get_custom_llm_provider_from_request_body, | |
| ) | |
| from litellm.proxy.hooks.managed_files import _PROXY_LiteLLMManagedFiles | |
| from litellm.proxy.utils import ProxyLogging | |
| from litellm.router import Router | |
| from litellm.types.llms.openai import ( | |
| CREATE_FILE_REQUESTS_PURPOSE, | |
| OpenAIFileObject, | |
| OpenAIFilesPurpose, | |
| ) | |
| router = APIRouter() | |
| files_config = None | |
| def set_files_config(config): | |
| global files_config | |
| if config is None: | |
| return | |
| if not isinstance(config, list): | |
| raise ValueError("invalid files config, expected a list is not a list") | |
| for element in config: | |
| if isinstance(element, dict): | |
| for key, value in element.items(): | |
| if isinstance(value, str) and value.startswith("os.environ/"): | |
| element[key] = get_secret_str(value) | |
| files_config = config | |
| def get_files_provider_config( | |
| custom_llm_provider: str, | |
| ): | |
| global files_config | |
| if custom_llm_provider == "vertex_ai": | |
| return None | |
| if files_config is None: | |
| raise ValueError("files_settings is not set, set it on your config.yaml file.") | |
| for setting in files_config: | |
| if setting.get("custom_llm_provider") == custom_llm_provider: | |
| return setting | |
| return None | |
| def get_first_json_object(file_content_bytes: bytes) -> Optional[dict]: | |
| try: | |
| # Decode the bytes to a string and split into lines | |
| file_content = file_content_bytes.decode("utf-8") | |
| first_line = file_content.splitlines()[0].strip() | |
| # Parse the JSON object from the first line | |
| json_object = json.loads(first_line) | |
| return json_object | |
| except (json.JSONDecodeError, UnicodeDecodeError): | |
| return None | |
| def get_model_from_json_obj(json_object: dict) -> Optional[str]: | |
| body = json_object.get("body", {}) or {} | |
| model = body.get("model") | |
| return model | |
| def is_known_model(model: Optional[str], llm_router: Optional[Router]) -> bool: | |
| """ | |
| Returns True if the model is in the llm_router model names | |
| """ | |
| if model is None or llm_router is None: | |
| return False | |
| model_names = llm_router.get_model_names() | |
| is_in_list = False | |
| if model in model_names: | |
| is_in_list = True | |
| return is_in_list | |
| async def _deprecated_loadbalanced_create_file( | |
| llm_router: Optional[Router], | |
| router_model: str, | |
| _create_file_request: CreateFileRequest, | |
| ) -> OpenAIFileObject: | |
| if llm_router is None: | |
| raise HTTPException( | |
| status_code=500, | |
| detail={ | |
| "error": "LLM Router not initialized. Ensure models added to proxy." | |
| }, | |
| ) | |
| response = await llm_router.acreate_file(model=router_model, **_create_file_request) | |
| return response | |
| async def route_create_file( | |
| llm_router: Optional[Router], | |
| _create_file_request: CreateFileRequest, | |
| purpose: OpenAIFilesPurpose, | |
| proxy_logging_obj: ProxyLogging, | |
| user_api_key_dict: UserAPIKeyAuth, | |
| target_model_names_list: List[str], | |
| is_router_model: bool, | |
| router_model: Optional[str], | |
| custom_llm_provider: str, | |
| ) -> OpenAIFileObject: | |
| if ( | |
| litellm.enable_loadbalancing_on_batch_endpoints is True | |
| and is_router_model | |
| and router_model is not None | |
| ): | |
| response = await _deprecated_loadbalanced_create_file( | |
| llm_router=llm_router, | |
| router_model=router_model, | |
| _create_file_request=_create_file_request, | |
| ) | |
| elif target_model_names_list: | |
| managed_files_obj = cast( | |
| Optional[_PROXY_LiteLLMManagedFiles], | |
| proxy_logging_obj.get_proxy_hook("managed_files"), | |
| ) | |
| if managed_files_obj is None: | |
| raise ProxyException( | |
| message="Managed files hook not found", | |
| type="None", | |
| param="None", | |
| code=500, | |
| ) | |
| if llm_router is None: | |
| raise ProxyException( | |
| message="LLM Router not found", | |
| type="None", | |
| param="None", | |
| code=500, | |
| ) | |
| response = await managed_files_obj.acreate_file( | |
| llm_router=llm_router, | |
| create_file_request=_create_file_request, | |
| target_model_names_list=target_model_names_list, | |
| litellm_parent_otel_span=user_api_key_dict.parent_otel_span, | |
| ) | |
| else: | |
| # get configs for custom_llm_provider | |
| llm_provider_config = get_files_provider_config( | |
| custom_llm_provider=custom_llm_provider | |
| ) | |
| if llm_provider_config is not None: | |
| # add llm_provider_config to data | |
| _create_file_request.update(llm_provider_config) | |
| _create_file_request.pop("custom_llm_provider", None) # type: ignore | |
| # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch | |
| response = await litellm.acreate_file(**_create_file_request, custom_llm_provider=custom_llm_provider) # type: ignore | |
| return response | |
| async def create_file( | |
| request: Request, | |
| fastapi_response: Response, | |
| purpose: str = Form(...), | |
| target_model_names: str = Form(default=""), | |
| provider: Optional[str] = None, | |
| custom_llm_provider: str = Form(default="openai"), | |
| file: UploadFile = File(...), | |
| user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
| ): | |
| """ | |
| Upload a file that can be used across - Assistants API, Batch API | |
| This is the equivalent of POST https://api.openai.com/v1/files | |
| Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/create | |
| Example Curl | |
| ``` | |
| curl http://localhost:4000/v1/files \ | |
| -H "Authorization: Bearer sk-1234" \ | |
| -F purpose="batch" \ | |
| -F file="@mydata.jsonl" | |
| ``` | |
| """ | |
| from litellm.proxy.proxy_server import ( | |
| add_litellm_data_to_request, | |
| general_settings, | |
| llm_router, | |
| proxy_config, | |
| proxy_logging_obj, | |
| version, | |
| ) | |
| data: Dict = {} | |
| try: | |
| # Use orjson to parse JSON data, orjson speeds up requests significantly | |
| # Read the file content | |
| file_content = await file.read() | |
| custom_llm_provider = ( | |
| provider | |
| or await get_custom_llm_provider_from_request_body(request=request) | |
| or "openai" | |
| ) | |
| target_model_names_list = ( | |
| target_model_names.split(",") if target_model_names else [] | |
| ) | |
| target_model_names_list = [model.strip() for model in target_model_names_list] | |
| # Prepare the data for forwarding | |
| # Replace with: | |
| valid_purposes = get_args(OpenAIFilesPurpose) | |
| if purpose not in valid_purposes: | |
| raise HTTPException( | |
| status_code=400, | |
| detail={ | |
| "error": f"Invalid purpose: {purpose}. Must be one of: {valid_purposes}", | |
| }, | |
| ) | |
| # Cast purpose to OpenAIFilesPurpose type | |
| purpose = cast(OpenAIFilesPurpose, purpose) | |
| data = {} | |
| # Include original request and headers in the data | |
| data = await add_litellm_data_to_request( | |
| data=data, | |
| request=request, | |
| general_settings=general_settings, | |
| user_api_key_dict=user_api_key_dict, | |
| version=version, | |
| proxy_config=proxy_config, | |
| ) | |
| # Prepare the file data according to FileTypes | |
| file_data = (file.filename, file_content, file.content_type) | |
| ## check if model is a loadbalanced model | |
| router_model: Optional[str] = None | |
| is_router_model = False | |
| if litellm.enable_loadbalancing_on_batch_endpoints is True: | |
| json_obj = get_first_json_object(file_content_bytes=file_content) | |
| if json_obj: | |
| router_model = get_model_from_json_obj(json_object=json_obj) | |
| is_router_model = is_known_model( | |
| model=router_model, llm_router=llm_router | |
| ) | |
| _create_file_request = CreateFileRequest( | |
| file=file_data, purpose=cast(CREATE_FILE_REQUESTS_PURPOSE, purpose), **data | |
| ) | |
| response = await route_create_file( | |
| llm_router=llm_router, | |
| _create_file_request=_create_file_request, | |
| purpose=purpose, | |
| proxy_logging_obj=proxy_logging_obj, | |
| user_api_key_dict=user_api_key_dict, | |
| target_model_names_list=target_model_names_list, | |
| is_router_model=is_router_model, | |
| router_model=router_model, | |
| custom_llm_provider=custom_llm_provider, | |
| ) | |
| if response is None: | |
| raise HTTPException( | |
| status_code=500, | |
| detail={"error": "Failed to create file. Please try again."}, | |
| ) | |
| ### ALERTING ### | |
| asyncio.create_task( | |
| proxy_logging_obj.update_request_status( | |
| litellm_call_id=data.get("litellm_call_id", ""), status="success" | |
| ) | |
| ) | |
| ## POST CALL HOOKS ### | |
| _response = await proxy_logging_obj.post_call_success_hook( | |
| data=data, user_api_key_dict=user_api_key_dict, response=response | |
| ) | |
| if _response is not None and isinstance(_response, OpenAIFileObject): | |
| response = _response | |
| ### RESPONSE HEADERS ### | |
| hidden_params = getattr(response, "_hidden_params", {}) or {} | |
| model_id = hidden_params.get("model_id", None) or "" | |
| cache_key = hidden_params.get("cache_key", None) or "" | |
| api_base = hidden_params.get("api_base", None) or "" | |
| fastapi_response.headers.update( | |
| ProxyBaseLLMRequestProcessing.get_custom_headers( | |
| user_api_key_dict=user_api_key_dict, | |
| model_id=model_id, | |
| cache_key=cache_key, | |
| api_base=api_base, | |
| version=version, | |
| model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
| ) | |
| ) | |
| return response | |
| except Exception as e: | |
| await proxy_logging_obj.post_call_failure_hook( | |
| user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data | |
| ) | |
| verbose_proxy_logger.exception( | |
| "litellm.proxy.proxy_server.create_file(): Exception occured - {}".format( | |
| str(e) | |
| ) | |
| ) | |
| if isinstance(e, HTTPException): | |
| raise ProxyException( | |
| message=getattr(e, "message", str(e.detail)), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), | |
| ) | |
| else: | |
| error_msg = f"{str(e)}" | |
| raise ProxyException( | |
| message=getattr(e, "message", error_msg), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", 500), | |
| ) | |
| async def get_file_content( | |
| request: Request, | |
| fastapi_response: Response, | |
| file_id: str, | |
| provider: Optional[str] = None, | |
| user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
| ): | |
| """ | |
| Returns information about a specific file. that can be used across - Assistants API, Batch API | |
| This is the equivalent of GET https://api.openai.com/v1/files/{file_id}/content | |
| Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/retrieve-contents | |
| Example Curl | |
| ``` | |
| curl http://localhost:4000/v1/files/file-abc123/content \ | |
| -H "Authorization: Bearer sk-1234" | |
| ``` | |
| """ | |
| from litellm.proxy.proxy_server import ( | |
| add_litellm_data_to_request, | |
| general_settings, | |
| llm_router, | |
| proxy_config, | |
| proxy_logging_obj, | |
| version, | |
| ) | |
| data: Dict = {} | |
| try: | |
| # Include original request and headers in the data | |
| data = await add_litellm_data_to_request( | |
| data=data, | |
| request=request, | |
| general_settings=general_settings, | |
| user_api_key_dict=user_api_key_dict, | |
| version=version, | |
| proxy_config=proxy_config, | |
| ) | |
| custom_llm_provider = ( | |
| provider | |
| or await get_custom_llm_provider_from_request_body(request=request) | |
| or "openai" | |
| ) | |
| ## check if file_id is a litellm managed file | |
| is_base64_unified_file_id = ( | |
| _PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(file_id) | |
| ) | |
| if is_base64_unified_file_id: | |
| managed_files_obj = cast( | |
| Optional[_PROXY_LiteLLMManagedFiles], | |
| proxy_logging_obj.get_proxy_hook("managed_files"), | |
| ) | |
| if managed_files_obj is None: | |
| raise ProxyException( | |
| message="Managed files hook not found", | |
| type="None", | |
| param="None", | |
| code=500, | |
| ) | |
| if llm_router is None: | |
| raise ProxyException( | |
| message="LLM Router not found", | |
| type="None", | |
| param="None", | |
| code=500, | |
| ) | |
| response = await managed_files_obj.afile_content( | |
| file_id=file_id, | |
| litellm_parent_otel_span=user_api_key_dict.parent_otel_span, | |
| llm_router=llm_router, | |
| **data, | |
| ) | |
| else: | |
| response = await litellm.afile_content( | |
| custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore | |
| ) | |
| ### ALERTING ### | |
| asyncio.create_task( | |
| proxy_logging_obj.update_request_status( | |
| litellm_call_id=data.get("litellm_call_id", ""), status="success" | |
| ) | |
| ) | |
| ### RESPONSE HEADERS ### | |
| hidden_params = getattr(response, "_hidden_params", {}) or {} | |
| model_id = hidden_params.get("model_id", None) or "" | |
| cache_key = hidden_params.get("cache_key", None) or "" | |
| api_base = hidden_params.get("api_base", None) or "" | |
| fastapi_response.headers.update( | |
| ProxyBaseLLMRequestProcessing.get_custom_headers( | |
| user_api_key_dict=user_api_key_dict, | |
| model_id=model_id, | |
| cache_key=cache_key, | |
| api_base=api_base, | |
| version=version, | |
| model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
| ) | |
| ) | |
| httpx_response: Optional[httpx.Response] = getattr(response, "response", None) | |
| if httpx_response is None: | |
| raise ValueError( | |
| f"Invalid response - response.response is None - got {response}" | |
| ) | |
| return Response( | |
| content=httpx_response.content, | |
| status_code=httpx_response.status_code, | |
| headers=httpx_response.headers, | |
| ) | |
| except Exception as e: | |
| await proxy_logging_obj.post_call_failure_hook( | |
| user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data | |
| ) | |
| verbose_proxy_logger.error( | |
| "litellm.proxy.proxy_server.retrieve_file_content(): Exception occured - {}".format( | |
| str(e) | |
| ) | |
| ) | |
| verbose_proxy_logger.debug(traceback.format_exc()) | |
| if isinstance(e, HTTPException): | |
| raise ProxyException( | |
| message=getattr(e, "message", str(e.detail)), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), | |
| ) | |
| else: | |
| error_msg = f"{str(e)}" | |
| raise ProxyException( | |
| message=getattr(e, "message", error_msg), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", 500), | |
| ) | |
| async def get_file( | |
| request: Request, | |
| fastapi_response: Response, | |
| file_id: str, | |
| provider: Optional[str] = None, | |
| user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
| ): | |
| """ | |
| Returns information about a specific file. that can be used across - Assistants API, Batch API | |
| This is the equivalent of GET https://api.openai.com/v1/files/{file_id} | |
| Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/retrieve | |
| Example Curl | |
| ``` | |
| curl http://localhost:4000/v1/files/file-abc123 \ | |
| -H "Authorization: Bearer sk-1234" | |
| ``` | |
| """ | |
| from litellm.proxy.proxy_server import ( | |
| add_litellm_data_to_request, | |
| general_settings, | |
| proxy_config, | |
| proxy_logging_obj, | |
| version, | |
| ) | |
| data: Dict = {} | |
| try: | |
| custom_llm_provider = ( | |
| provider | |
| or await get_custom_llm_provider_from_request_body(request=request) | |
| or "openai" | |
| ) | |
| # Include original request and headers in the data | |
| data = await add_litellm_data_to_request( | |
| data=data, | |
| request=request, | |
| general_settings=general_settings, | |
| user_api_key_dict=user_api_key_dict, | |
| version=version, | |
| proxy_config=proxy_config, | |
| ) | |
| ## check if file_id is a litellm managed file | |
| is_base64_unified_file_id = ( | |
| _PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(file_id) | |
| ) | |
| if is_base64_unified_file_id: | |
| managed_files_obj = cast( | |
| Optional[_PROXY_LiteLLMManagedFiles], | |
| proxy_logging_obj.get_proxy_hook("managed_files"), | |
| ) | |
| if managed_files_obj is None: | |
| raise ProxyException( | |
| message="Managed files hook not found", | |
| type="None", | |
| param="None", | |
| code=500, | |
| ) | |
| response = await managed_files_obj.afile_retrieve( | |
| file_id=file_id, | |
| litellm_parent_otel_span=user_api_key_dict.parent_otel_span, | |
| ) | |
| else: | |
| response = await litellm.afile_retrieve( | |
| custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore | |
| ) | |
| ### ALERTING ### | |
| asyncio.create_task( | |
| proxy_logging_obj.update_request_status( | |
| litellm_call_id=data.get("litellm_call_id", ""), status="success" | |
| ) | |
| ) | |
| ### RESPONSE HEADERS ### | |
| hidden_params = getattr(response, "_hidden_params", {}) or {} | |
| model_id = hidden_params.get("model_id", None) or "" | |
| cache_key = hidden_params.get("cache_key", None) or "" | |
| api_base = hidden_params.get("api_base", None) or "" | |
| fastapi_response.headers.update( | |
| ProxyBaseLLMRequestProcessing.get_custom_headers( | |
| user_api_key_dict=user_api_key_dict, | |
| model_id=model_id, | |
| cache_key=cache_key, | |
| api_base=api_base, | |
| version=version, | |
| model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
| ) | |
| ) | |
| return response | |
| except Exception as e: | |
| await proxy_logging_obj.post_call_failure_hook( | |
| user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data | |
| ) | |
| verbose_proxy_logger.error( | |
| "litellm.proxy.proxy_server.retrieve_file(): Exception occured - {}".format( | |
| str(e) | |
| ) | |
| ) | |
| verbose_proxy_logger.debug(traceback.format_exc()) | |
| if isinstance(e, HTTPException): | |
| raise ProxyException( | |
| message=getattr(e, "message", str(e.detail)), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), | |
| ) | |
| else: | |
| error_msg = f"{str(e)}" | |
| raise ProxyException( | |
| message=getattr(e, "message", error_msg), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", 500), | |
| ) | |
| async def delete_file( | |
| request: Request, | |
| fastapi_response: Response, | |
| file_id: str, | |
| provider: Optional[str] = None, | |
| user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
| ): | |
| """ | |
| Deletes a specified file. that can be used across - Assistants API, Batch API | |
| This is the equivalent of DELETE https://api.openai.com/v1/files/{file_id} | |
| Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/delete | |
| Example Curl | |
| ``` | |
| curl http://localhost:4000/v1/files/file-abc123 \ | |
| -X DELETE \ | |
| -H "Authorization: Bearer $OPENAI_API_KEY" | |
| ``` | |
| """ | |
| from litellm.proxy.proxy_server import ( | |
| add_litellm_data_to_request, | |
| general_settings, | |
| llm_router, | |
| proxy_config, | |
| proxy_logging_obj, | |
| version, | |
| ) | |
| data: Dict = {} | |
| try: | |
| custom_llm_provider = ( | |
| provider | |
| or await get_custom_llm_provider_from_request_body(request=request) | |
| or "openai" | |
| ) | |
| # Include original request and headers in the data | |
| data = await add_litellm_data_to_request( | |
| data=data, | |
| request=request, | |
| general_settings=general_settings, | |
| user_api_key_dict=user_api_key_dict, | |
| version=version, | |
| proxy_config=proxy_config, | |
| ) | |
| ## check if file_id is a litellm managed file | |
| is_base64_unified_file_id = ( | |
| _PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(file_id) | |
| ) | |
| if is_base64_unified_file_id: | |
| managed_files_obj = cast( | |
| Optional[_PROXY_LiteLLMManagedFiles], | |
| proxy_logging_obj.get_proxy_hook("managed_files"), | |
| ) | |
| if managed_files_obj is None: | |
| raise ProxyException( | |
| message="Managed files hook not found", | |
| type="None", | |
| param="None", | |
| code=500, | |
| ) | |
| if llm_router is None: | |
| raise ProxyException( | |
| message="LLM Router not found", | |
| type="None", | |
| param="None", | |
| code=500, | |
| ) | |
| response = await managed_files_obj.afile_delete( | |
| file_id=file_id, | |
| litellm_parent_otel_span=user_api_key_dict.parent_otel_span, | |
| llm_router=llm_router, | |
| **data, | |
| ) | |
| else: | |
| response = await litellm.afile_delete( | |
| custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore | |
| ) | |
| ### ALERTING ### | |
| asyncio.create_task( | |
| proxy_logging_obj.update_request_status( | |
| litellm_call_id=data.get("litellm_call_id", ""), status="success" | |
| ) | |
| ) | |
| ### RESPONSE HEADERS ### | |
| hidden_params = getattr(response, "_hidden_params", {}) or {} | |
| model_id = hidden_params.get("model_id", None) or "" | |
| cache_key = hidden_params.get("cache_key", None) or "" | |
| api_base = hidden_params.get("api_base", None) or "" | |
| fastapi_response.headers.update( | |
| ProxyBaseLLMRequestProcessing.get_custom_headers( | |
| user_api_key_dict=user_api_key_dict, | |
| model_id=model_id, | |
| cache_key=cache_key, | |
| api_base=api_base, | |
| version=version, | |
| model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
| ) | |
| ) | |
| return response | |
| except Exception as e: | |
| await proxy_logging_obj.post_call_failure_hook( | |
| user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data | |
| ) | |
| verbose_proxy_logger.error( | |
| "litellm.proxy.proxy_server.retrieve_file(): Exception occured - {}".format( | |
| str(e) | |
| ) | |
| ) | |
| verbose_proxy_logger.debug(traceback.format_exc()) | |
| if isinstance(e, HTTPException): | |
| raise ProxyException( | |
| message=getattr(e, "message", str(e.detail)), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), | |
| ) | |
| else: | |
| error_msg = f"{str(e)}" | |
| raise ProxyException( | |
| message=getattr(e, "message", error_msg), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", 500), | |
| ) | |
| async def list_files( | |
| request: Request, | |
| fastapi_response: Response, | |
| user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
| provider: Optional[str] = None, | |
| purpose: Optional[str] = None, | |
| ): | |
| """ | |
| Returns information about a specific file. that can be used across - Assistants API, Batch API | |
| This is the equivalent of GET https://api.openai.com/v1/files/ | |
| Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/list | |
| Example Curl | |
| ``` | |
| curl http://localhost:4000/v1/files\ | |
| -H "Authorization: Bearer sk-1234" | |
| ``` | |
| """ | |
| from litellm.proxy.proxy_server import ( | |
| add_litellm_data_to_request, | |
| general_settings, | |
| proxy_config, | |
| proxy_logging_obj, | |
| version, | |
| ) | |
| data: Dict = {} | |
| try: | |
| custom_llm_provider = ( | |
| provider | |
| or await get_custom_llm_provider_from_request_body(request=request) | |
| or "openai" | |
| ) | |
| # Include original request and headers in the data | |
| data = await add_litellm_data_to_request( | |
| data=data, | |
| request=request, | |
| general_settings=general_settings, | |
| user_api_key_dict=user_api_key_dict, | |
| version=version, | |
| proxy_config=proxy_config, | |
| ) | |
| response = await litellm.afile_list( | |
| custom_llm_provider=custom_llm_provider, purpose=purpose, **data # type: ignore | |
| ) | |
| ### ALERTING ### | |
| asyncio.create_task( | |
| proxy_logging_obj.update_request_status( | |
| litellm_call_id=data.get("litellm_call_id", ""), status="success" | |
| ) | |
| ) | |
| ### RESPONSE HEADERS ### | |
| hidden_params = getattr(response, "_hidden_params", {}) or {} | |
| model_id = hidden_params.get("model_id", None) or "" | |
| cache_key = hidden_params.get("cache_key", None) or "" | |
| api_base = hidden_params.get("api_base", None) or "" | |
| fastapi_response.headers.update( | |
| ProxyBaseLLMRequestProcessing.get_custom_headers( | |
| user_api_key_dict=user_api_key_dict, | |
| model_id=model_id, | |
| cache_key=cache_key, | |
| api_base=api_base, | |
| version=version, | |
| model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
| ) | |
| ) | |
| return response | |
| except Exception as e: | |
| await proxy_logging_obj.post_call_failure_hook( | |
| user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data | |
| ) | |
| verbose_proxy_logger.error( | |
| "litellm.proxy.proxy_server.list_files(): Exception occured - {}".format( | |
| str(e) | |
| ) | |
| ) | |
| verbose_proxy_logger.debug(traceback.format_exc()) | |
| if isinstance(e, HTTPException): | |
| raise ProxyException( | |
| message=getattr(e, "message", str(e.detail)), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), | |
| ) | |
| else: | |
| error_msg = f"{str(e)}" | |
| raise ProxyException( | |
| message=getattr(e, "message", error_msg), | |
| type=getattr(e, "type", "None"), | |
| param=getattr(e, "param", "None"), | |
| code=getattr(e, "status_code", 500), | |
| ) | |