# CodeSearch-ModernBERT-Owl Demo Space using CodeSearchNet Dataset import gradio as gr import torch import random from sentence_transformers import SentenceTransformer, util from datasets import load_dataset from spaces import GPU # --- Load model --- model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl") model.eval() # --- Load CodeSearchNet dataset (test split only) --- dataset = load_dataset("code_x_glue_tc_nl_code_search_adv", trust_remote_code=True, split="test") # --- Query & Candidate Generator --- def get_random_query(seed: int = 42): random.seed(seed) idx = random.randint(0, len(dataset) - 1) sample = dataset[idx] return sample["code"], sample["docstring"] @GPU def code_search_demo(seed: int): code_str, doc_str = get_random_query(seed) query_emb = model.encode(doc_str, convert_to_tensor=True) # ランダムに10件取得 candidates = dataset.shuffle(seed=seed).select(range(10)) candidate_codes = [c["code"] for c in candidates] candidate_embeddings = model.encode(candidate_codes, convert_to_tensor=True) # 類似度スコア算出 cos_scores = util.cos_sim(query_emb, candidate_embeddings)[0] results = sorted(zip(candidate_codes, cos_scores), key=lambda x: x[1], reverse=True) # 結果出力 output = f"### 🔍 Query Docstring\n\n{doc_str}\n\n" output += "## 🏆 Top Matches:\n" medals = ["🥇", "🥈", "🥉"] + [f"#{i+1}" for i in range(3, len(results))] for i, (code, score) in enumerate(results): label = medals[i] if i < len(medals) else f"#{i+1}" output += f"\n**{label}** - Similarity: {score.item():.4f}\n\n```python\n{code.strip()[:1000]}\n```\n" return output # --- Gradio UI --- demo = gr.Interface( fn=code_search_demo, inputs=gr.Slider(0, 100000, value=42, step=1, label="Random Seed"), outputs=gr.Markdown(label="Search Result"), title="🔎 CodeSearch-ModernBERT-Owl Demo", description="docstring から類似 Python 関数を検索(CodeXGlue + ModernBERT-Owl)" ) if __name__ == "__main__": demo.launch()