File size: 2,090 Bytes
efb129d
1abd701
efb129d
 
 
 
 
1abd701
efb129d
 
 
1abd701
efb129d
066cc0b
1abd701
182358f
 
efb129d
182358f
 
 
1abd701
efb129d
182358f
 
efb129d
1abd701
182358f
 
 
 
1abd701
182358f
efb129d
182358f
1abd701
182358f
 
efb129d
 
 
 
182358f
 
efb129d
1abd701
182358f
efb129d
 
182358f
efb129d
 
182358f
1abd701
 
 
182358f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# CodeSearch-ModernBERT-Owl Demo Space using CodeSearchNet Dataset
import gradio as gr
import torch
import random
from sentence_transformers import SentenceTransformer, util
from datasets import load_dataset
from spaces import GPU

# --- Load model ---
model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl")
model.eval()

# --- Load CodeSearchNet dataset (test split only) ---
dataset = load_dataset("code_x_glue_tc_nl_code_search_adv", trust_remote_code=True, split="test")

# --- Query & Candidate Generator ---
def get_random_query(seed: int = 42):
    random.seed(seed)
    idx = random.randint(0, len(dataset) - 1)
    sample = dataset[idx]
    return sample["code"], sample["docstring"]

@GPU
def code_search_demo(seed: int):
    code_str, doc_str = get_random_query(seed)
    query_emb = model.encode(doc_str, convert_to_tensor=True)

    # ランダムに10件取得
    candidates = dataset.shuffle(seed=seed).select(range(10))
    candidate_codes = [c["code"] for c in candidates]
    candidate_embeddings = model.encode(candidate_codes, convert_to_tensor=True)

    # 類似度スコア算出
    cos_scores = util.cos_sim(query_emb, candidate_embeddings)[0]
    results = sorted(zip(candidate_codes, cos_scores), key=lambda x: x[1], reverse=True)

    # 結果出力
    output = f"### 🔍 Query Docstring\n\n{doc_str}\n\n"
    output += "## 🏆 Top Matches:\n"
    medals = ["🥇", "🥈", "🥉"] + [f"#{i+1}" for i in range(3, len(results))]
    for i, (code, score) in enumerate(results):
        label = medals[i] if i < len(medals) else f"#{i+1}"
        output += f"\n**{label}** - Similarity: {score.item():.4f}\n\n```python\n{code.strip()[:1000]}\n```\n"

    return output

# --- Gradio UI ---
demo = gr.Interface(
    fn=code_search_demo,
    inputs=gr.Slider(0, 100000, value=42, step=1, label="Random Seed"),
    outputs=gr.Markdown(label="Search Result"),
    title="🔎 CodeSearch-ModernBERT-Owl Demo",
    description="docstring から類似 Python 関数を検索(CodeXGlue + ModernBERT-Owl)"
)

if __name__ == "__main__":
    demo.launch()