import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer @st.cache_resource() def load_model(): model_name = "deepseek-ai/deepseek-coder-1.3b-instruct" # Using smaller model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float32, # Use float32 for CPU (float16 needs GPU) device_map={"": "cpu"} # Force model to use CPU ) return model, tokenizer model, tokenizer = load_model()