Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import fitz # PyMuPDF
|
3 |
-
import openai
|
4 |
-
import os
|
5 |
-
|
6 |
-
# Load API key from Hugging Face secret
|
7 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
8 |
-
|
9 |
-
# Extract text from PDF
|
10 |
-
def extract_text_from_pdf(file):
|
11 |
-
text = ""
|
12 |
-
with fitz.open(stream=file.read(), filetype="pdf") as doc:
|
13 |
-
for page in doc:
|
14 |
-
text += page.get_text()
|
15 |
-
return text
|
16 |
-
|
17 |
-
# Split text into chunks
|
18 |
-
def split_text(text, max_tokens=1500):
|
19 |
-
import textwrap
|
20 |
-
return textwrap.wrap(text, max_tokens)
|
21 |
-
|
22 |
-
# Generate summary
|
23 |
-
def generate_summary(text):
|
24 |
-
chunks = split_text(text)
|
25 |
-
summaries = []
|
26 |
-
for i, chunk in enumerate(chunks):
|
27 |
-
print(f"β³ Summarizing chunk {i + 1}/{len(chunks)}...")
|
28 |
-
response = openai.ChatCompletion.create(
|
29 |
-
model="gpt-3.5-turbo",
|
30 |
-
messages=[{"role": "user", "content": f"Summarize the following:\n{chunk}"}],
|
31 |
-
temperature=0.5,
|
32 |
-
)
|
33 |
-
summaries.append(response['choices'][0]['message']['content'].strip())
|
34 |
-
return "\n\n".join(summaries)
|
35 |
-
|
36 |
-
# Generate all formats
|
37 |
-
def summarize_paper(pdf_file):
|
38 |
-
try:
|
39 |
-
raw_text = extract_text_from_pdf(pdf_file)
|
40 |
-
summary = generate_summary(raw_text)
|
41 |
-
|
42 |
-
response = openai.ChatCompletion.create(
|
43 |
-
model="gpt-3.5-turbo",
|
44 |
-
messages=[
|
45 |
-
{"role": "user", "content": f"Make an ELI5 version of this:\n{summary}"}
|
46 |
-
],
|
47 |
-
temperature=0.7,
|
48 |
-
)
|
49 |
-
eli5 = response['choices'][0]['message']['content'].strip()
|
50 |
-
|
51 |
-
response = openai.ChatCompletion.create(
|
52 |
-
model="gpt-3.5-turbo",
|
53 |
-
messages=[
|
54 |
-
{"role": "user", "content": f"Write a TL;DR of this:\n{summary}"}
|
55 |
-
],
|
56 |
-
temperature=0.7,
|
57 |
-
)
|
58 |
-
tldr = response['choices'][0]['message']['content'].strip()
|
59 |
-
|
60 |
-
response = openai.ChatCompletion.create(
|
61 |
-
model="gpt-3.5-turbo",
|
62 |
-
messages=[
|
63 |
-
{"role": "user", "content": f"Why does this research matter? {summary}"}
|
64 |
-
],
|
65 |
-
temperature=0.7,
|
66 |
-
)
|
67 |
-
why_it_matters = response['choices'][0]['message']['content'].strip()
|
68 |
-
|
69 |
-
return summary, eli5, tldr, why_it_matters
|
70 |
-
except Exception as e:
|
71 |
-
return f"β Error: {str(e)}", "", "", ""
|
72 |
-
|
73 |
-
# Gradio Interface
|
74 |
-
with gr.Blocks() as demo:
|
75 |
-
gr.Markdown("π **Paper News Summarizer**\nUpload a research paper PDF and get a human-friendly summary, ELI5, TL;DR, and why it matters.")
|
76 |
-
with gr.Row():
|
77 |
-
pdf_file = gr.File(label="Upload Research Paper (PDF)", file_types=[".pdf"])
|
78 |
-
submit_btn = gr.Button("Submit")
|
79 |
-
clear_btn = gr.Button("Clear")
|
80 |
-
|
81 |
-
with gr.Row():
|
82 |
-
full_summary = gr.Textbox(label="π Full Summary", lines=10, interactive=False)
|
83 |
-
eli5_summary = gr.Textbox(label="π§ ELI5", lines=5, interactive=False)
|
84 |
-
with gr.Row():
|
85 |
-
tldr_summary = gr.Textbox(label="β‘ TL;DR", lines=2, interactive=False)
|
86 |
-
importance = gr.Textbox(label="π― Why It Matters", lines=5, interactive=False)
|
87 |
-
|
88 |
-
submit_btn.click(summarize_paper, inputs=pdf_file, outputs=[full_summary, eli5_summary, tldr_summary, importance])
|
89 |
-
clear_btn.click(lambda: ("", "", "", ""), outputs=[full_summary, eli5_summary, tldr_summary, importance])
|
90 |
-
|
91 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|