File size: 4,456 Bytes
7392322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3e9d02
 
7392322
 
 
b3e9d02
7392322
b3e9d02
7392322
 
b3e9d02
7392322
 
 
b3e9d02
7392322
 
b3e9d02
7392322
b3e9d02
7392322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# app.py
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel # Use PeftModel for loading adapter
import os
import gc

# --- Configuration ---
# Base model ID (the one you fine-tuned FROM)
base_model_id = "Qwen/Qwen2-0.5B"
# Path WITHIN THE SPACE where you will upload your adapter files
# Create a folder named 'adapter' in your Space and upload files there
adapter_path = "./adapter"

# Determine device (use GPU if available in the Space)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# --- Load Model and Tokenizer ---
print(f"Loading base model: {base_model_id}")
# Load base model in 4-bit
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    quantization_config=None, # Load base normally first
    torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, # Use appropriate dtype
    # device_map="auto", # <--- REMOVE THIS LINE
    device_map=device,   # <--- CHANGE TO THIS (load directly to device)
    trust_remote_code=True
)
base_model.config.use_cache = True # Enable cache for inference speed
print(f"Base model loaded to device: {device}")

# --- Load PEFT Adapter ---
print(f"Loading PEFT adapter from: {adapter_path}")
# Load the PEFT model (adapter) on top of the base model
# Ensure the base_model is on the correct device before loading PEFT
model = PeftModel.from_pretrained(base_model, adapter_path)
print("Adapter loaded.")

# --- Merge Adapter ---
print("Merging adapter weights...")
model = model.merge_and_unload()
print("Adapter merged.") # Model should now be on the device specified earlier

# --- Load Tokenizer ---
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)

# Set padding token if necessary (using the logic from your training script)
if tokenizer.pad_token is None:
    if tokenizer.eos_token:
        tokenizer.pad_token = tokenizer.eos_token
        print(f"Set tokenizer pad_token to eos_token: {tokenizer.pad_token}")
    else:
        print("Warning: EOS token not found, cannot set pad_token automatically.")

tokenizer.padding_side = "left" # Important for generation

print("Model and tokenizer loaded successfully.")

# --- Inference Function ---
def summarize_text(article_text):
    if not article_text:
        return "Please enter some text to summarize."

    # Format prompt for Qwen Base model (from your training script)
    prompt = f"Summarize the following text:\n\n{article_text}\n\nSummary:"

    try:
        print("Tokenizing input...")
        inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True).to(device)

        print("Generating summary...")
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=100, # Max length of the summary
                temperature=0.6,
                top_p=0.9,
                do_sample=True,
                pad_token_id=tokenizer.pad_token_id
            )

        # Decode only the generated part (after the prompt)
        response_ids = outputs[0][inputs["input_ids"].shape[1]:]
        summary = tokenizer.decode(response_ids, skip_special_tokens=True).strip()
        print("Summary generated.")

        # Clean up memory after generation
        del inputs, outputs
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        return summary

    except Exception as e:
        print(f"Error during inference: {e}")
        return f"An error occurred: {e}"

# --- Create Gradio Interface ---
print("Creating Gradio interface...")
iface = gr.Interface(
    fn=summarize_text,
    inputs=gr.Textbox(lines=10, placeholder="Paste the text you want to summarize here...", label="Article Text"),
    outputs=gr.Textbox(label="Generated Summary"),
    title="Qwen2-0.5B Base - Fine-tuned Summarizer (GRPO/QLoRA)",
    description="Enter text to get a summary generated by the fine-tuned Qwen2-0.5B base model.",
    examples=[
        ["SUBREDDIT: r/relationships TITLE: I (f/22) have to figure out if I want to still know these girls or not and would hate to sound insulting POST: Not sure if this belongs here but it's worth a try... (rest of example text from your logs)"]
        # Add more examples if you like
    ]
)

# --- Launch the App ---
print("Launching Gradio app...")
iface.launch()