Shriti09 commited on
Commit
073f9e1
·
verified ·
1 Parent(s): 235a096

Delete model_smol2.py

Browse files
Files changed (1) hide show
  1. model_smol2.py +0 -260
model_smol2.py DELETED
@@ -1,260 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
-
5
-
6
- # Configuration as provided
7
- config_model = {
8
- "bos_token_id": 0,
9
- "eos_token_id": 0,
10
- "hidden_act": "silu",
11
- "hidden_size": 576,
12
- "initializer_range": 0.041666666666666664,
13
- "intermediate_size": 1536,
14
- "is_llama_config": True,
15
- "max_position_embeddings": 2048,
16
- "num_attention_heads": 9,
17
- "num_hidden_layers": 30,
18
- "num_key_value_heads": 3,
19
- "pad_token_id": None,
20
- "pretraining_tp": 1,
21
- "rms_norm_eps": 1.0e-05,
22
- "rope_interleaved": False,
23
- "rope_scaling": None,
24
- "rope_theta": 10000.0,
25
- "tie_word_embeddings": True,
26
- "use_cache": True,
27
- "vocab_size": 49152
28
- }
29
-
30
- # 1. Rotary Embedding
31
- class LlamaRotaryEmbedding(nn.Module):
32
- def __init__(self, dim: int, theta: float = 10000.0):
33
- super().__init__()
34
- self.dim = dim
35
- self.theta = theta
36
-
37
- def forward(self, x):
38
- batch_size, seq_len, _ = x.size()
39
- device = x.device
40
-
41
- # Create the position indices
42
- position = torch.arange(seq_len, dtype=torch.float32, device=device).unsqueeze(1) # Shape: (seq_len, 1)
43
- freqs = torch.pow(self.theta, -torch.arange(0, self.dim, 2, dtype=torch.float32, device=device) / self.dim) # Shape: (dim/2,)
44
-
45
- # Reshape freqs for einsum: Shape (dim/2, 1) -> (dim/2, 1) broadcasting with position
46
- freqs = freqs.unsqueeze(1) # Shape: (dim/2, 1)
47
-
48
- # Calculate sinusoidal embeddings
49
- sinusoidal_embeddings = torch.einsum('i,j->ij', position.squeeze(), freqs.squeeze()) # Shape: (seq_len, dim/2)
50
-
51
- # Sinusoidal encoding
52
- sin = sinusoidal_embeddings.sin().unsqueeze(0) # Shape: (1, seq_len, dim/2)
53
- cos = sinusoidal_embeddings.cos().unsqueeze(0) # Shape: (1, seq_len, dim/2)
54
-
55
- # Concatenate the sin and cos values to create the final embedding
56
- rotary_embeddings = torch.cat([sin, cos], dim=-1).unsqueeze(0) # Shape: (1, seq_len, dim)
57
-
58
- # Remove the extra leading dimension (1) to match input tensor shape
59
- return rotary_embeddings.squeeze(0) # Shape: (seq_len, dim)
60
- '''
61
- # Testing LlamaRotaryEmbedding again with the modified code
62
- rotary_emb = LlamaRotaryEmbedding(dim=576, theta=10000.0)
63
- input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
64
- rotary_output = rotary_emb(input_tensor)
65
- print(f"Rotary embedding output shape: {rotary_output.shape}")
66
- '''
67
-
68
-
69
- # 2. Attention Layer
70
- class LlamaAttention(nn.Module):
71
- def __init__(self, config):
72
- super().__init__()
73
- self.q_proj = nn.Linear(config['hidden_size'], config['hidden_size'], bias=False)
74
- self.k_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False)
75
- self.v_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False)
76
- self.o_proj = nn.Linear(config['hidden_size'] // 3, config['hidden_size'], bias=False) # Adjust output projection size
77
- self.rope_emb = LlamaRotaryEmbedding(config['hidden_size'])
78
-
79
- def forward(self, x):
80
- batch_size, seq_len, _ = x.size() # Get the batch size and sequence length
81
- q = self.q_proj(x) # Shape: (batch_size, seq_len, hidden_size)
82
- k = self.k_proj(x) # Shape: (batch_size, seq_len, hidden_size // 3)
83
- v = self.v_proj(x) # Shape: (batch_size, seq_len, hidden_size // 3)
84
-
85
- # Apply rotary embeddings (positional encoding)
86
- q, k = self.rope_emb(q), self.rope_emb(k)
87
-
88
- # Calculate attention weights (scaled dot-product attention)
89
- attn_weights = torch.matmul(q, k.transpose(-2, -1)) # Shape: (batch_size, seq_len, seq_len)
90
- attn_probs = torch.nn.functional.softmax(attn_weights, dim=-1) # Shape: (batch_size, seq_len, seq_len)
91
-
92
- # Apply attention to values
93
- attn_output = torch.matmul(attn_probs, v) # Shape: (batch_size, seq_len, hidden_size // 3)
94
-
95
- # Output projection (adjusted to match hidden_size)
96
- out = self.o_proj(attn_output) # Shape: (batch_size, seq_len, hidden_size)
97
-
98
- return out
99
- '''
100
- # Testing LlamaAttention again
101
- attention_layer = LlamaAttention(config)
102
- input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
103
- attention_output = attention_layer(input_tensor)
104
- print(f"Attention output shape: {attention_output.shape}")
105
- '''
106
-
107
- # 3. MLP Layer
108
- class LlamaMLP(nn.Module):
109
- def __init__(self, config):
110
- super().__init__()
111
- self.gate_proj = nn.Linear(config['hidden_size'], config['intermediate_size'], bias=False) # Hidden size to intermediate size
112
- self.up_proj = nn.Linear(config['intermediate_size'], config['intermediate_size'], bias=False) # Intermediate size to intermediate size
113
- self.down_proj = nn.Linear(config['intermediate_size'], config['hidden_size'], bias=False) # Intermediate size to hidden size
114
- self.act_fn = torch.nn.SiLU() # Activation function
115
-
116
- def forward(self, x):
117
- batch_size, seq_len, _ = x.size()
118
-
119
- # Flatten input to (batch_size * seq_len, hidden_size) for projection
120
- x = x.view(batch_size * seq_len, -1) # Shape: (batch_size * seq_len, hidden_size)
121
-
122
- # Apply gate projection
123
- x = self.gate_proj(x) # Shape: (batch_size * seq_len, intermediate_size)
124
- x = self.act_fn(x) # Apply activation
125
-
126
- # Apply up projection
127
- x = self.up_proj(x) # Shape: (batch_size * seq_len, intermediate_size)
128
-
129
- # Apply down projection
130
- x = self.down_proj(x) # Shape: (batch_size * seq_len, hidden_size)
131
-
132
- # Reshape back to (batch_size, seq_len, hidden_size)
133
- x = x.view(batch_size, seq_len, -1) # Shape: (batch_size, seq_len, hidden_size)
134
-
135
- return x
136
- '''
137
- # Test the MLP again
138
- mlp_layer = LlamaMLP(config)
139
- input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
140
- mlp_output = mlp_layer(input_tensor)
141
- print(f"MLP output shape: {mlp_output.shape}")
142
- '''
143
-
144
-
145
- # 4. Decoder Layer
146
- class LlamaDecoderLayer(nn.Module):
147
- def __init__(self, config):
148
- super().__init__()
149
- self.self_attn = LlamaAttention(config)
150
- self.mlp = LlamaMLP(config)
151
- self.input_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
152
- self.post_attention_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
153
-
154
- def forward(self, x):
155
- # Apply input normalization
156
- x = self.input_layernorm(x)
157
-
158
- # Attention
159
- attn_output = self.self_attn(x)
160
- x = x + attn_output # Residual connection
161
-
162
- # Apply post-attention layer normalization
163
- x = self.post_attention_layernorm(x)
164
-
165
- # Apply MLP
166
- mlp_output = self.mlp(x)
167
- x = x + mlp_output # Residual connection
168
- return x
169
- '''
170
- # Testing LlamaDecoderLayer
171
- decoder_layer = LlamaDecoderLayer(config)
172
- input_tensor = torch.randn(10, 2, 576) # (seq_len, batch_size, hidden_size)
173
- decoder_output = decoder_layer(input_tensor)
174
- print(f"Decoder layer output shape: {decoder_output.shape}")
175
-
176
- # 5. Model
177
- class LlamaModel(nn.Module):
178
- def __init__(self, config):
179
- super().__init__()
180
- self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size'])
181
-
182
- # Partially shared decoder layers
183
- self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])])
184
-
185
- # Separate adapters for each layer (adds more parameters)
186
- self.adapters = nn.ModuleList([
187
- nn.Linear(config['hidden_size'], config['hidden_size'], bias=False)
188
- for _ in range(config['num_hidden_layers'])
189
- ])
190
-
191
- self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
192
-
193
- def forward(self, input_ids):
194
- # Initial embedding lookup
195
- x = self.embed_tokens(input_ids)
196
-
197
- # Pass through transformer layers with unique adapters per layer
198
- for i, layer in enumerate(self.layers):
199
- x = layer(x) # Apply the i-th decoder layer
200
- x = x + self.adapters[i](x) # Add per-layer adapter
201
-
202
- # Apply the final layer normalization
203
- x = self.norm(x)
204
- return x
205
-
206
-
207
- '''
208
- class LlamaModel(nn.Module):
209
- def __init__(self, config):
210
- super().__init__()
211
- self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size'])
212
- self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])])
213
- self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
214
- self.rotary_emb = LlamaRotaryEmbedding(config['hidden_size'])
215
-
216
- def forward(self, input_ids):
217
- # Initial embedding lookup
218
- x = self.embed_tokens(input_ids)
219
-
220
- # Pass through the transformer layers
221
- for layer in self.layers:
222
- x = layer(x)
223
-
224
- # Apply the final layer normalization
225
- x = self.norm(x)
226
- return x
227
- '''
228
- # Testing LlamaModel
229
- model = LlamaModel(config)
230
- input_ids = torch.randint(0, config['vocab_size'], (10, 2)) # (seq_len, batch_size)
231
- model_output = model(input_ids)
232
- print(f"Model output shape: {model_output.shape}")
233
- '''
234
- # 6. Causal Language Model (Final Model)
235
- class LlamaForCausalLM(nn.Module):
236
- def __init__(self, config):
237
- super().__init__()
238
- self.model = LlamaModel(config)
239
- # Share weights between the embedding and output layers
240
- #self.lm_head = self.model.embed_tokens
241
-
242
- self.lm_head= nn.Linear(config['hidden_size'], config['vocab_size'], bias=False)
243
-
244
- def forward(self, input_ids):
245
- hidden_states = self.model(input_ids)
246
- logits = self.lm_head(hidden_states)
247
- return logits
248
-
249
- # Testing LlamaForCausalLM
250
- '''
251
- causal_lm_model = LlamaForCausalLM(config_model)
252
- print(causal_lm_model)
253
- from torchinfo import summary
254
- summary( causal_lm_model )
255
- input_ids = torch.randint(0, config_model['vocab_size'], (10, 2)) # (seq_len, batch_size)
256
- logits = causal_lm_model(input_ids)
257
- print(f"Logits shape: {logits.shape}")
258
- '''
259
-
260
-