Shriti09 commited on
Commit
95775e3
·
verified ·
1 Parent(s): baa8c5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -6,9 +6,9 @@ import gradio as gr
6
  # Use GPU if available
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- # Base model and adapter paths
10
  base_model_name = "microsoft/phi-2" # Pull from HF Hub directly
11
- adapter_path = "Shriti09/Microsoft-Phi-QLora" # Your uploaded adapter folder in Space repo
12
 
13
  print("🔧 Loading base model...")
14
  base_model = AutoModelForCausalLM.from_pretrained(
@@ -61,7 +61,8 @@ def chat_fn(message, history):
61
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
62
  gr.Markdown("<h1>🧠 Phi-2 QLoRA Chatbot</h1>")
63
 
64
- chatbot = gr.Chatbot()
 
65
  message = gr.Textbox(label="Your message:")
66
  clear = gr.Button("Clear chat")
67
 
@@ -71,5 +72,5 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
71
  clear.click(lambda: [], None, chatbot)
72
  clear.click(lambda: [], None, state)
73
 
74
- # Run with queue for multiple users
75
- demo.queue(concurrency_count=2).launch()
 
6
  # Use GPU if available
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
+ # Base model and adapter paths (updated for Hugging Face repo)
10
  base_model_name = "microsoft/phi-2" # Pull from HF Hub directly
11
+ adapter_path = "Shriti09/phi2-qlora-adapter" # Update with your Hugging Face repo path
12
 
13
  print("🔧 Loading base model...")
14
  base_model = AutoModelForCausalLM.from_pretrained(
 
61
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
62
  gr.Markdown("<h1>🧠 Phi-2 QLoRA Chatbot</h1>")
63
 
64
+ # Use 'type' parameter to specify message format for gr.Chatbot()
65
+ chatbot = gr.Chatbot(type="messages") # Use 'messages' type for structured messages
66
  message = gr.Textbox(label="Your message:")
67
  clear = gr.Button("Clear chat")
68
 
 
72
  clear.click(lambda: [], None, chatbot)
73
  clear.click(lambda: [], None, state)
74
 
75
+ # Run the app without the 'concurrency_count' argument
76
+ demo.queue().launch()