Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import torch
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
-
import os
|
6 |
|
7 |
# Use GPU if available
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -12,16 +11,18 @@ base_model_name = "microsoft/phi-2" # Pull from HF Hub directly
|
|
12 |
adapter_path = "Shriti09/Microsoft-Phi-QLora" # Update with your Hugging Face repo path
|
13 |
|
14 |
print("π§ Loading base model...")
|
15 |
-
#
|
16 |
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
base_model_name,
|
18 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
19 |
)
|
20 |
|
21 |
print("π§ Loading LoRA adapter...")
|
|
|
22 |
adapter_model = PeftModel.from_pretrained(base_model, adapter_path)
|
23 |
|
24 |
print("π Merging adapter into base model...")
|
|
|
25 |
merged_model = adapter_model.merge_and_unload()
|
26 |
merged_model.eval()
|
27 |
|
@@ -29,16 +30,10 @@ merged_model.eval()
|
|
29 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
30 |
print("β
Model ready for inference!")
|
31 |
|
32 |
-
#
|
33 |
-
def
|
34 |
-
#
|
35 |
-
|
36 |
-
for user_msg, bot_msg in history:
|
37 |
-
full_prompt += f"User: {user_msg}\nAI: {bot_msg}\n"
|
38 |
-
full_prompt += f"User: {message}\nAI:"
|
39 |
-
|
40 |
-
# Tokenize inputs
|
41 |
-
inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
|
42 |
|
43 |
with torch.no_grad():
|
44 |
outputs = merged_model.generate(
|
@@ -50,30 +45,20 @@ def chat_fn(message, history):
|
|
50 |
pad_token_id=tokenizer.eos_token_id
|
51 |
)
|
52 |
|
53 |
-
# Decode and return
|
54 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
-
|
56 |
-
|
57 |
-
# Append to history in the correct format for gr.Chatbot (list of dictionaries)
|
58 |
-
history.append({"role": "user", "content": message})
|
59 |
-
history.append({"role": "assistant", "content": response})
|
60 |
-
|
61 |
-
return history, history
|
62 |
|
63 |
# Gradio UI
|
64 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
65 |
-
gr.Markdown("<h1>π§ Phi-2 QLoRA
|
66 |
-
|
67 |
-
#
|
68 |
-
|
69 |
-
|
70 |
-
clear = gr.Button("Clear chat")
|
71 |
-
|
72 |
-
state = gr.State([])
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
clear.click(lambda: [], None, state)
|
77 |
|
78 |
-
#
|
79 |
-
demo.
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
# Use GPU if available
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
adapter_path = "Shriti09/Microsoft-Phi-QLora" # Update with your Hugging Face repo path
|
12 |
|
13 |
print("π§ Loading base model...")
|
14 |
+
# Load the base model
|
15 |
base_model = AutoModelForCausalLM.from_pretrained(
|
16 |
base_model_name,
|
17 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
18 |
)
|
19 |
|
20 |
print("π§ Loading LoRA adapter...")
|
21 |
+
# Load the LoRA adapter
|
22 |
adapter_model = PeftModel.from_pretrained(base_model, adapter_path)
|
23 |
|
24 |
print("π Merging adapter into base model...")
|
25 |
+
# Merge adapter into the base model
|
26 |
merged_model = adapter_model.merge_and_unload()
|
27 |
merged_model.eval()
|
28 |
|
|
|
30 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
31 |
print("β
Model ready for inference!")
|
32 |
|
33 |
+
# Text generation function
|
34 |
+
def generate_text(prompt):
|
35 |
+
# Tokenize the input
|
36 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
with torch.no_grad():
|
39 |
outputs = merged_model.generate(
|
|
|
45 |
pad_token_id=tokenizer.eos_token_id
|
46 |
)
|
47 |
|
48 |
+
# Decode and return the generated response
|
49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Gradio UI
|
53 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
54 |
+
gr.Markdown("<h1>π§ Phi-2 QLoRA Text Generator</h1>")
|
55 |
+
|
56 |
+
# Textbox for user input and a button to generate text
|
57 |
+
prompt = gr.Textbox(label="Enter your prompt:", lines=2)
|
58 |
+
output = gr.Textbox(label="Generated text:", lines=5)
|
|
|
|
|
|
|
59 |
|
60 |
+
# Generate text when the button is clicked
|
61 |
+
prompt.submit(generate_text, prompt, output)
|
|
|
62 |
|
63 |
+
# Launch the app
|
64 |
+
demo.launch(share=True)
|