Shriti09 commited on
Commit
38d8974
·
verified ·
1 Parent(s): 1d02732

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -9
app.py CHANGED
@@ -1,15 +1,69 @@
 
 
 
1
  import gradio as gr
2
- import subprocess
3
 
4
- def merge_model():
5
- subprocess.run(["python", "merge_and_save_model.py"], check=True)
6
- return "Model merged and saved successfully!"
7
 
8
- with gr.Blocks() as demo:
9
- gr.Markdown("<h1>🧠 Phi-2 QLoRA Model Merger</h1>")
10
- merge_button = gr.Button("Merge Model")
11
- output = gr.Textbox(label="Merge Status")
12
 
13
- merge_button.click(merge_model, [], output)
 
 
 
 
 
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  demo.launch(share=True)
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from peft import PeftModel
4
  import gradio as gr
 
5
 
6
+ # Use GPU if available
7
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
8
 
9
+ # Base model and adapter paths
10
+ base_model_name = "microsoft/phi-2" # Pull from HF Hub directly
11
+ adapter_path = "Shriti09/Microsoft-Phi-QLora" # Update with your Hugging Face repo path
 
12
 
13
+ print("🔧 Loading base model...")
14
+ # Load the base model
15
+ base_model = AutoModelForCausalLM.from_pretrained(
16
+ base_model_name,
17
+ torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
18
+ )
19
 
20
+ print("🔧 Loading LoRA adapter...")
21
+ # Load the LoRA adapter
22
+ adapter_model = PeftModel.from_pretrained(base_model, adapter_path)
23
+
24
+ print("🔗 Merging adapter into base model...")
25
+ # Merge adapter into the base model
26
+ merged_model = adapter_model.merge_and_unload()
27
+ merged_model.eval()
28
+
29
+ # Load tokenizer
30
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
31
+ print("✅ Model ready for inference!")
32
+
33
+ # Text generation function
34
+ def generate_text(prompt):
35
+ # Tokenize the input
36
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
37
+
38
+ with torch.no_grad():
39
+ outputs = merged_model.generate(
40
+ **inputs,
41
+ max_new_tokens=150,
42
+ do_sample=True,
43
+ temperature=0.7,
44
+ top_p=0.9,
45
+ pad_token_id=tokenizer.eos_token_id
46
+ )
47
+
48
+ # Decode and return the generated response
49
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
50
+ return response
51
+
52
+ # Gradio UI
53
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
54
+ gr.Markdown("<h1>🧠 Phi-2 QLoRA Text Generator</h1>")
55
+
56
+ # Textbox for user input
57
+ prompt = gr.Textbox(label="Enter your prompt:", lines=2)
58
+
59
+ # Output textbox for generated text
60
+ output = gr.Textbox(label="Generated text:", lines=5)
61
+
62
+ # Button to trigger text generation
63
+ generate_button = gr.Button("Generate Text")
64
+
65
+ # Set the button action to generate text
66
+ generate_button.click(generate_text, inputs=prompt, outputs=output)
67
+
68
+ # Launch the app
69
  demo.launch(share=True)