Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,69 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import subprocess
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
return "Model merged and saved successfully!"
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
output = gr.Textbox(label="Merge Status")
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
demo.launch(share=True)
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
# Use GPU if available
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
|
9 |
+
# Base model and adapter paths
|
10 |
+
base_model_name = "microsoft/phi-2" # Pull from HF Hub directly
|
11 |
+
adapter_path = "Shriti09/Microsoft-Phi-QLora" # Update with your Hugging Face repo path
|
|
|
12 |
|
13 |
+
print("🔧 Loading base model...")
|
14 |
+
# Load the base model
|
15 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
base_model_name,
|
17 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
18 |
+
)
|
19 |
|
20 |
+
print("🔧 Loading LoRA adapter...")
|
21 |
+
# Load the LoRA adapter
|
22 |
+
adapter_model = PeftModel.from_pretrained(base_model, adapter_path)
|
23 |
+
|
24 |
+
print("🔗 Merging adapter into base model...")
|
25 |
+
# Merge adapter into the base model
|
26 |
+
merged_model = adapter_model.merge_and_unload()
|
27 |
+
merged_model.eval()
|
28 |
+
|
29 |
+
# Load tokenizer
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
31 |
+
print("✅ Model ready for inference!")
|
32 |
+
|
33 |
+
# Text generation function
|
34 |
+
def generate_text(prompt):
|
35 |
+
# Tokenize the input
|
36 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = merged_model.generate(
|
40 |
+
**inputs,
|
41 |
+
max_new_tokens=150,
|
42 |
+
do_sample=True,
|
43 |
+
temperature=0.7,
|
44 |
+
top_p=0.9,
|
45 |
+
pad_token_id=tokenizer.eos_token_id
|
46 |
+
)
|
47 |
+
|
48 |
+
# Decode and return the generated response
|
49 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
return response
|
51 |
+
|
52 |
+
# Gradio UI
|
53 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
54 |
+
gr.Markdown("<h1>🧠 Phi-2 QLoRA Text Generator</h1>")
|
55 |
+
|
56 |
+
# Textbox for user input
|
57 |
+
prompt = gr.Textbox(label="Enter your prompt:", lines=2)
|
58 |
+
|
59 |
+
# Output textbox for generated text
|
60 |
+
output = gr.Textbox(label="Generated text:", lines=5)
|
61 |
+
|
62 |
+
# Button to trigger text generation
|
63 |
+
generate_button = gr.Button("Generate Text")
|
64 |
+
|
65 |
+
# Set the button action to generate text
|
66 |
+
generate_button.click(generate_text, inputs=prompt, outputs=output)
|
67 |
+
|
68 |
+
# Launch the app
|
69 |
demo.launch(share=True)
|