Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
-
### 1. Imports and class names setup ###
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
5 |
from model import create_effnetb2_model
|
6 |
from timeit import default_timer as timer
|
7 |
from typing import Tuple, Dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Load class names
|
10 |
try:
|
@@ -13,7 +20,7 @@ try:
|
|
13 |
except FileNotFoundError:
|
14 |
raise FileNotFoundError("class_names.txt not found.")
|
15 |
|
16 |
-
|
17 |
try:
|
18 |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101)
|
19 |
except Exception as e:
|
@@ -32,7 +39,7 @@ except FileNotFoundError:
|
|
32 |
except Exception as e:
|
33 |
raise Exception(f"Error loading weights: {str(e)}")
|
34 |
|
35 |
-
|
36 |
def predict(img) -> Tuple[Dict, float]:
|
37 |
try:
|
38 |
start_time = timer()
|
@@ -48,7 +55,7 @@ def predict(img) -> Tuple[Dict, float]:
|
|
48 |
except Exception as e:
|
49 |
return {"error": f"Prediction failed: {str(e)}"}, 0.0
|
50 |
|
51 |
-
|
52 |
title = "FoodVision 101 ๐๐"
|
53 |
description = "An EfficientNetB2 feature extractor to classify 101 food classes."
|
54 |
|
@@ -58,6 +65,7 @@ except FileNotFoundError:
|
|
58 |
example_list = []
|
59 |
print("Warning: 'examples/' directory not found.")
|
60 |
|
|
|
61 |
demo = gr.Interface(
|
62 |
fn=predict,
|
63 |
inputs=gr.Image(type="pil"),
|
@@ -70,5 +78,8 @@ demo = gr.Interface(
|
|
70 |
description=description,
|
71 |
)
|
72 |
|
73 |
-
# Launch
|
74 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
from model import create_effnetb2_model
|
5 |
from timeit import default_timer as timer
|
6 |
from typing import Tuple, Dict
|
7 |
+
import pkg_resources
|
8 |
+
|
9 |
+
# Check Gradio version
|
10 |
+
try:
|
11 |
+
gradio_version = pkg_resources.get_distribution("gradio").version
|
12 |
+
print(f"Using Gradio version: {gradio_version}")
|
13 |
+
except pkg_resources.DistributionNotFound:
|
14 |
+
raise ImportError("Gradio is not installed. Please install it using 'pip install gradio'.")
|
15 |
|
16 |
# Load class names
|
17 |
try:
|
|
|
20 |
except FileNotFoundError:
|
21 |
raise FileNotFoundError("class_names.txt not found.")
|
22 |
|
23 |
+
# Model and transforms preparation
|
24 |
try:
|
25 |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101)
|
26 |
except Exception as e:
|
|
|
39 |
except Exception as e:
|
40 |
raise Exception(f"Error loading weights: {str(e)}")
|
41 |
|
42 |
+
# Predict function
|
43 |
def predict(img) -> Tuple[Dict, float]:
|
44 |
try:
|
45 |
start_time = timer()
|
|
|
55 |
except Exception as e:
|
56 |
return {"error": f"Prediction failed: {str(e)}"}, 0.0
|
57 |
|
58 |
+
# Gradio app
|
59 |
title = "FoodVision 101 ๐๐"
|
60 |
description = "An EfficientNetB2 feature extractor to classify 101 food classes."
|
61 |
|
|
|
65 |
example_list = []
|
66 |
print("Warning: 'examples/' directory not found.")
|
67 |
|
68 |
+
# Simplified Gradio interface
|
69 |
demo = gr.Interface(
|
70 |
fn=predict,
|
71 |
inputs=gr.Image(type="pil"),
|
|
|
78 |
description=description,
|
79 |
)
|
80 |
|
81 |
+
# Launch with share=True for Hugging Face Spaces
|
82 |
+
try:
|
83 |
+
demo.launch(share=True)
|
84 |
+
except Exception as e:
|
85 |
+
raise Exception(f"Failed to launch Gradio app: {str(e)}")
|