Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,18 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
import PyPDF2
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Load models
|
9 |
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
@@ -19,7 +28,7 @@ def extract_text_from_pdf(file_path):
|
|
19 |
return text
|
20 |
|
21 |
# Find the most relevant section in the document
|
22 |
-
def find_relevant_section(query, sections, section_embeddings
|
23 |
stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
|
24 |
|
25 |
# Semantic search
|
@@ -31,40 +40,40 @@ def find_relevant_section(query, sections, section_embeddings, log_messages):
|
|
31 |
|
32 |
SIMILARITY_THRESHOLD = 0.4
|
33 |
if similarity_score >= SIMILARITY_THRESHOLD:
|
34 |
-
|
35 |
-
return best_section
|
36 |
|
37 |
-
|
38 |
|
39 |
# Keyword-based fallback search with stopword filtering
|
40 |
-
query_words = {word for word in query.lower().split() if word not in stopwords}
|
41 |
for section in sections:
|
42 |
section_words = {word for word in section.lower().split() if word not in stopwords}
|
43 |
common_words = query_words.intersection(section_words)
|
44 |
if len(common_words) >= 2:
|
45 |
-
|
46 |
-
return section
|
47 |
|
48 |
-
|
49 |
-
return "I don’t have enough information to answer that."
|
50 |
|
51 |
# Process the uploaded file with detailed logging
|
52 |
-
def process_file(file, state
|
53 |
if file is None:
|
54 |
-
|
55 |
-
return [("Bot", "Please upload a file.")], state
|
56 |
|
57 |
file_path = file.name
|
58 |
if file_path.lower().endswith(".pdf"):
|
59 |
-
|
60 |
text = extract_text_from_pdf(file_path)
|
61 |
elif file_path.lower().endswith(".txt"):
|
62 |
-
|
63 |
with open(file_path, 'r', encoding='utf-8') as f:
|
64 |
text = f.read()
|
65 |
else:
|
66 |
-
|
67 |
-
return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
|
68 |
|
69 |
sections = text.split('\n\n')
|
70 |
section_embeddings = embedder.encode(sections, convert_to_tensor=True)
|
@@ -75,27 +84,19 @@ def process_file(file, state, log_messages):
|
|
75 |
state['feedback_count'] = 0
|
76 |
state['mode'] = 'waiting_for_query'
|
77 |
state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
|
78 |
-
|
79 |
-
return state['chat_history'], state
|
80 |
|
81 |
# Handle user input (queries and feedback)
|
82 |
-
def handle_input(user_input, state
|
83 |
if state['mode'] == 'waiting_for_upload':
|
84 |
state['chat_history'].append(("Bot", "Please upload a file first."))
|
85 |
-
|
86 |
-
return state['chat_history'], state, log_messages
|
87 |
elif state['mode'] == 'waiting_for_query':
|
88 |
-
if user_input.lower() == "exit":
|
89 |
-
log_messages = log_message("User entered 'exit'. Ending session.", log_messages)
|
90 |
-
state['mode'] = 'exited'
|
91 |
-
state['chat_history'].append(("User", "exit"))
|
92 |
-
state['chat_history'].append(("Bot", "Session ended. You can download the log file."))
|
93 |
-
return state['chat_history'], state, log_messages
|
94 |
-
|
95 |
query = user_input
|
96 |
state['current_query'] = query
|
97 |
state['feedback_count'] = 0
|
98 |
-
context
|
99 |
if context == "I don’t have enough information to answer that.":
|
100 |
answer = context
|
101 |
else:
|
@@ -105,46 +106,47 @@ def handle_input(user_input, state, log_messages):
|
|
105 |
state['mode'] = 'waiting_for_feedback'
|
106 |
state['chat_history'].append(("User", query))
|
107 |
state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
|
108 |
-
|
109 |
-
log_messages = log_message(f"Query: {query}, Answer: {answer}", log_messages)
|
110 |
elif state['mode'] == 'waiting_for_feedback':
|
111 |
-
if user_input.lower() == "exit":
|
112 |
-
log_messages = log_message("User entered 'exit'. Ending session.", log_messages)
|
113 |
-
state['mode'] = 'exited'
|
114 |
-
state['chat_history'].append(("User", "exit"))
|
115 |
-
state['chat_history'].append(("Bot", "Session ended. You can download the log file."))
|
116 |
-
return state['chat_history'], state, log_messages
|
117 |
-
|
118 |
feedback = user_input.lower()
|
119 |
state['chat_history'].append(("User", feedback))
|
120 |
-
|
121 |
if feedback == "good" or state['feedback_count'] >= 2:
|
122 |
state['mode'] = 'waiting_for_query'
|
123 |
if feedback == "good":
|
124 |
state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
|
125 |
-
|
126 |
else:
|
127 |
state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
|
128 |
-
|
129 |
else:
|
130 |
query = state['current_query']
|
131 |
-
context
|
132 |
if feedback == "too vague":
|
133 |
adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
|
134 |
elif feedback == "not helpful":
|
135 |
adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
|
136 |
else:
|
137 |
state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
|
138 |
-
|
139 |
-
return state['chat_history'], state
|
140 |
state['last_answer'] = adjusted_answer
|
141 |
state['feedback_count'] += 1
|
142 |
state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
# Initial state
|
150 |
initial_state = {
|
@@ -158,55 +160,26 @@ initial_state = {
|
|
158 |
'last_answer': None
|
159 |
}
|
160 |
|
161 |
-
# Initialize log_messages outside initial_state
|
162 |
-
log_messages = []
|
163 |
-
|
164 |
-
# Logging function to store messages in memory
|
165 |
-
def log_message(message, log_messages):
|
166 |
-
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
167 |
-
log_entry = f"{timestamp} - {message}"
|
168 |
-
log_messages.append(log_entry)
|
169 |
-
return log_messages
|
170 |
-
|
171 |
-
# Function to save logs to file
|
172 |
-
def save_logs_to_file(log_messages):
|
173 |
-
with open("support_bot_log.txt", "w") as log_file:
|
174 |
-
for log_message in log_messages:
|
175 |
-
log_file.write(log_message + "\n")
|
176 |
-
|
177 |
# Gradio interface
|
178 |
with gr.Blocks() as demo:
|
179 |
state = gr.State(initial_state)
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
181 |
chat = gr.Chatbot()
|
182 |
user_input = gr.Textbox(label="Your query or feedback")
|
183 |
submit_btn = gr.Button("Submit")
|
184 |
-
download_log_btn = gr.Button("Download Log File") # Changed to Button
|
185 |
-
log_file = gr.File(label="Log File") # Keep File for serving
|
186 |
|
187 |
# Process file upload
|
188 |
-
file_upload.upload(process_file, inputs=[file_upload, state
|
189 |
|
190 |
# Handle user input and clear the textbox
|
191 |
-
submit_btn.click(handle_input, inputs=[user_input, state
|
192 |
-
|
193 |
-
# Update the log file just before download
|
194 |
-
|
195 |
-
|
196 |
-
download_log_btn.click(
|
197 |
-
lambda log_messages: "support_bot_log.txt",
|
198 |
-
inputs=[gr.State(log_messages)],
|
199 |
-
outputs=[log_file]
|
200 |
-
)
|
201 |
|
202 |
-
#
|
203 |
-
|
204 |
-
lambda user_input, state, log_messages: (
|
205 |
-
save_logs_to_file(log_messages) if user_input.lower() == "exit" else None,
|
206 |
-
state
|
207 |
-
),
|
208 |
-
[user_input, state, gr.State(log_messages)],
|
209 |
-
[log_file, state]
|
210 |
-
)
|
211 |
|
212 |
-
demo.launch(share=True)
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
import PyPDF2
|
7 |
+
|
8 |
+
# Set up logging with immediate writing
|
9 |
+
logging.basicConfig(
|
10 |
+
filename='support_bot_log.txt',
|
11 |
+
level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(message)s',
|
13 |
+
force=True # Ensures any existing handlers are replaced and logging starts fresh
|
14 |
+
)
|
15 |
+
logger = logging.getLogger()
|
16 |
|
17 |
# Load models
|
18 |
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
|
|
28 |
return text
|
29 |
|
30 |
# Find the most relevant section in the document
|
31 |
+
def find_relevant_section(query, sections, section_embeddings):
|
32 |
stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
|
33 |
|
34 |
# Semantic search
|
|
|
40 |
|
41 |
SIMILARITY_THRESHOLD = 0.4
|
42 |
if similarity_score >= SIMILARITY_THRESHOLD:
|
43 |
+
logger.info(f"Found relevant section using embeddings for query: {query}")
|
44 |
+
return best_section
|
45 |
|
46 |
+
logger.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
|
47 |
|
48 |
# Keyword-based fallback search with stopword filtering
|
49 |
+
query_words = {word for word in query.lower().split() if word not in stopwords}
|
50 |
for section in sections:
|
51 |
section_words = {word for word in section.lower().split() if word not in stopwords}
|
52 |
common_words = query_words.intersection(section_words)
|
53 |
if len(common_words) >= 2:
|
54 |
+
logger.info(f"Keyword match found for query: {query} with common words: {common_words}")
|
55 |
+
return section
|
56 |
|
57 |
+
logger.info(f"No good keyword match found. Returning default fallback response.")
|
58 |
+
return "I don’t have enough information to answer that."
|
59 |
|
60 |
# Process the uploaded file with detailed logging
|
61 |
+
def process_file(file, state):
|
62 |
if file is None:
|
63 |
+
logger.info("No file uploaded.")
|
64 |
+
return [("Bot", "Please upload a file.")], state
|
65 |
|
66 |
file_path = file.name
|
67 |
if file_path.lower().endswith(".pdf"):
|
68 |
+
logger.info(f"Uploaded PDF file: {file_path}")
|
69 |
text = extract_text_from_pdf(file_path)
|
70 |
elif file_path.lower().endswith(".txt"):
|
71 |
+
logger.info(f"Uploaded TXT file: {file_path}")
|
72 |
with open(file_path, 'r', encoding='utf-8') as f:
|
73 |
text = f.read()
|
74 |
else:
|
75 |
+
logger.error(f"Unsupported file format: {file_path}")
|
76 |
+
return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
|
77 |
|
78 |
sections = text.split('\n\n')
|
79 |
section_embeddings = embedder.encode(sections, convert_to_tensor=True)
|
|
|
84 |
state['feedback_count'] = 0
|
85 |
state['mode'] = 'waiting_for_query'
|
86 |
state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
|
87 |
+
logger.info(f"Processed file: {file_path}")
|
88 |
+
return state['chat_history'], state
|
89 |
|
90 |
# Handle user input (queries and feedback)
|
91 |
+
def handle_input(user_input, state):
|
92 |
if state['mode'] == 'waiting_for_upload':
|
93 |
state['chat_history'].append(("Bot", "Please upload a file first."))
|
94 |
+
logger.info("User attempted to interact without uploading a file.")
|
|
|
95 |
elif state['mode'] == 'waiting_for_query':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
query = user_input
|
97 |
state['current_query'] = query
|
98 |
state['feedback_count'] = 0
|
99 |
+
context = find_relevant_section(query, state['sections'], state['section_embeddings'])
|
100 |
if context == "I don’t have enough information to answer that.":
|
101 |
answer = context
|
102 |
else:
|
|
|
106 |
state['mode'] = 'waiting_for_feedback'
|
107 |
state['chat_history'].append(("User", query))
|
108 |
state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
|
109 |
+
logger.info(f"Query: {query}, Answer: {answer}")
|
|
|
110 |
elif state['mode'] == 'waiting_for_feedback':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
feedback = user_input.lower()
|
112 |
state['chat_history'].append(("User", feedback))
|
113 |
+
logger.info(f"Feedback: {feedback}")
|
114 |
if feedback == "good" or state['feedback_count'] >= 2:
|
115 |
state['mode'] = 'waiting_for_query'
|
116 |
if feedback == "good":
|
117 |
state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
|
118 |
+
logger.info("Feedback accepted as 'good'. Waiting for next query.")
|
119 |
else:
|
120 |
state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
|
121 |
+
logger.info("Max feedback iterations reached. Waiting for next query.")
|
122 |
else:
|
123 |
query = state['current_query']
|
124 |
+
context = find_relevant_section(query, state['sections'], state['section_embeddings'])
|
125 |
if feedback == "too vague":
|
126 |
adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
|
127 |
elif feedback == "not helpful":
|
128 |
adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
|
129 |
else:
|
130 |
state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
|
131 |
+
logger.info(f"Invalid feedback received: {feedback}")
|
132 |
+
return state['chat_history'], state
|
133 |
state['last_answer'] = adjusted_answer
|
134 |
state['feedback_count'] += 1
|
135 |
state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
|
136 |
+
logger.info(f"Adjusted answer: {adjusted_answer}")
|
137 |
+
return state['chat_history'], state
|
138 |
+
|
139 |
+
# Function to return the up-to-date log file for download
|
140 |
+
def get_log_file():
|
141 |
+
# Flush all log handlers to ensure log file is current
|
142 |
+
for handler in logger.handlers:
|
143 |
+
handler.flush()
|
144 |
+
# Ensure the log file exists; if not, create an empty one.
|
145 |
+
if not os.path.exists("support_bot_log.txt"):
|
146 |
+
with open("support_bot_log.txt", "w", encoding="utf-8") as f:
|
147 |
+
f.write("")
|
148 |
+
logger.info("Log file downloaded by user.")
|
149 |
+
return "support_bot_log.txt"
|
150 |
|
151 |
# Initial state
|
152 |
initial_state = {
|
|
|
160 |
'last_answer': None
|
161 |
}
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
# Gradio interface
|
164 |
with gr.Blocks() as demo:
|
165 |
state = gr.State(initial_state)
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
file_upload = gr.File(label="Upload PDF or TXT file")
|
169 |
+
download_btn = gr.Button("Download Log")
|
170 |
+
download_file = gr.File(label="Log File", interactive=False)
|
171 |
+
|
172 |
chat = gr.Chatbot()
|
173 |
user_input = gr.Textbox(label="Your query or feedback")
|
174 |
submit_btn = gr.Button("Submit")
|
|
|
|
|
175 |
|
176 |
# Process file upload
|
177 |
+
file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])
|
178 |
|
179 |
# Handle user input and clear the textbox
|
180 |
+
submit_btn.click(handle_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
# Set up download log button
|
183 |
+
download_btn.click(fn=get_log_file, inputs=[], outputs=download_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
demo.launch(share=True)
|