File size: 6,623 Bytes
e764d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import logging
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import PyPDF2

# Set up logging
logging.basicConfig(filename='support_bot_log.txt', level=logging.INFO)

# Load models
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
embedder = SentenceTransformer('all-MiniLM-L6-v2')

# Helper function to extract text from PDF
def extract_text_from_pdf(file_path):
    text = ""
    with open(file_path, "rb") as file:
        pdf_reader = PyPDF2.PdfReader(file)
        for page in pdf_reader.pages:
            text += page.extract_text() + "\n"
    return text

# Find the most relevant section in the document
def find_relevant_section(query, sections, section_embeddings):
    stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
    
    # Semantic search
    query_embedding = embedder.encode(query, convert_to_tensor=True)
    similarities = util.cos_sim(query_embedding, section_embeddings)[0]
    best_idx = similarities.argmax().item()
    best_section = sections[best_idx]
    similarity_score = similarities[best_idx].item()
    
    SIMILARITY_THRESHOLD = 0.4
    if similarity_score >= SIMILARITY_THRESHOLD:
        logging.info(f"Found relevant section using embeddings for query: {query}")
        return best_section
    
    logging.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
    
    # Keyword-based fallback search with stopword filtering
    query_words = {word for word in query.lower().split() if word not in stopwords}
    for section in sections:
        section_words = {word for word in section.lower().split() if word not in stopwords}
        common_words = query_words.intersection(section_words)
        if len(common_words) >= 2:
            logging.info(f"Keyword match found for query: {query} with common words: {common_words}")
            return section
    
    logging.info(f"No good keyword match found. Returning default fallback response.")
    return "I don’t have enough information to answer that."

# Process the uploaded file
def process_file(file, state):
    if file is None:
        return [("Bot", "Please upload a file.")], state
    
    file_path = file.name
    if file_path.lower().endswith(".pdf"):
        text = extract_text_from_pdf(file_path)
    elif file_path.lower().endswith(".txt"):
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
    else:
        return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
    
    sections = text.split('\n\n')
    section_embeddings = embedder.encode(sections, convert_to_tensor=True)
    state['document_text'] = text
    state['sections'] = sections
    state['section_embeddings'] = section_embeddings
    state['current_query'] = None
    state['feedback_count'] = 0
    state['mode'] = 'waiting_for_query'
    state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
    logging.info(f"Processed file: {file_path}")
    return state['chat_history'], state

# Handle user input (queries and feedback)
def handle_input(user_input, state):
    if state['mode'] == 'waiting_for_upload':
        state['chat_history'].append(("Bot", "Please upload a file first."))
    elif state['mode'] == 'waiting_for_query':
        query = user_input
        state['current_query'] = query
        state['feedback_count'] = 0
        context = find_relevant_section(query, state['sections'], state['section_embeddings'])
        if context == "I don’t have enough information to answer that.":
            answer = context
        else:
            result = qa_model(question=query, context=context)
            answer = result["answer"]
        state['last_answer'] = answer
        state['mode'] = 'waiting_for_feedback'
        state['chat_history'].append(("User", query))
        state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
        logging.info(f"Query: {query}, Answer: {answer}")
    elif state['mode'] == 'waiting_for_feedback':
        feedback = user_input.lower()
        state['chat_history'].append(("User", feedback))
        logging.info(f"Feedback: {feedback}")
        if feedback == "good" or state['feedback_count'] >= 2:
            state['mode'] = 'waiting_for_query'
            if feedback == "good":
                state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
            else:
                state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
        else:
            query = state['current_query']
            context = find_relevant_section(query, state['sections'], state['section_embeddings'])
            if feedback == "too vague":
                adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
            elif feedback == "not helpful":
                adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
            else:
                state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
                return state['chat_history'], state
            state['last_answer'] = adjusted_answer
            state['feedback_count'] += 1
            state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
            logging.info(f"Adjusted answer: {adjusted_answer}")
    return state['chat_history'], state

# Initial state
initial_state = {
    'document_text': None,
    'sections': None,
    'section_embeddings': None,
    'current_query': None,
    'feedback_count': 0,
    'mode': 'waiting_for_upload',
    'chat_history': [("Bot", "Please upload a PDF or TXT file to start.")],
    'last_answer': None
}

# Gradio interface
with gr.Blocks() as demo:
    state = gr.State(initial_state)
    file_upload = gr.File(label="Upload PDF or TXT file")
    chat = gr.Chatbot()
    user_input = gr.Textbox(label="Your query or feedback")
    submit_btn = gr.Button("Submit")

    # Process file upload
    file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])

    # Handle user input and clear the textbox
    submit_btn.click(handle_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)

demo.launch()