Commit
·
4d559b9
1
Parent(s):
10dfa9d
--init
Browse files- app.py +111 -49
- email_generator/__pycache__/main.cpython-312.pyc +0 -0
- email_generator/main.py +395 -0
- email_generator/util.py +0 -0
- requirements.txt +5 -1
app.py
CHANGED
|
@@ -1,64 +1,126 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
)
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
yield response
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from email_generator.main import loop_email_workflow, EMAIL_EVALUATOR_PROMPT, EMAIL_GENERATOR_PROMPT
|
| 3 |
+
import json
|
| 4 |
|
| 5 |
+
# Function to generate the email
|
| 6 |
+
def generate_email_workflow(persona_json: str, campaign_json: str, sender_json: str, max_attempts: int, openai_api_key: str):
|
| 7 |
+
"""
|
| 8 |
+
Generate a complete email with persona, campaign, and sender details.
|
| 9 |
|
| 10 |
+
Args:
|
| 11 |
+
persona_json (str): A JSON string representing the persona.
|
| 12 |
+
campaign_json (str): A JSON string representing the campaign details.
|
| 13 |
+
sender_json (str): A JSON string representing the sender details.
|
| 14 |
+
max_attempts (int): Maximum number of attempts for generating a valid email.
|
| 15 |
+
openai_api_key (str): The API key for OpenAI, if applicable.
|
| 16 |
|
| 17 |
+
Returns:
|
| 18 |
+
str: The complete generated email or an error message.
|
| 19 |
+
"""
|
| 20 |
+
try:
|
| 21 |
+
# Parse JSON strings to dictionaries
|
| 22 |
+
persona = json.loads(persona_json)
|
| 23 |
+
campaign = json.loads(campaign_json)
|
| 24 |
+
sender = json.loads(sender_json)
|
|
|
|
| 25 |
|
| 26 |
+
# Determine the model to use based on the API key
|
| 27 |
+
use_huggingface = not bool(openai_api_key)
|
| 28 |
+
model_used = "HuggingFace (Zephyr-7B)" if use_huggingface else "OpenAI (gpt-3.5-turbo)"
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Run the email generation workflow
|
| 31 |
+
result = loop_email_workflow(
|
| 32 |
+
persona=persona,
|
| 33 |
+
campaign=campaign,
|
| 34 |
+
sender_data=sender,
|
| 35 |
+
evaluator_prompt=EMAIL_EVALUATOR_PROMPT,
|
| 36 |
+
generator_prompt=EMAIL_GENERATOR_PROMPT,
|
| 37 |
+
max_tries=max_attempts,
|
| 38 |
+
use_huggingface=use_huggingface,
|
| 39 |
+
openai_api_key=openai_api_key if not use_huggingface else None,
|
| 40 |
+
)
|
| 41 |
|
| 42 |
+
if not result["final_email"]:
|
| 43 |
+
return f"Failed to generate a valid email after {max_attempts} attempts. Feedback: {result.get('message', 'No additional information.')}\n\nModel Used: {model_used}"
|
| 44 |
|
| 45 |
+
# Add sender information to the email content
|
| 46 |
+
generated_email = result["final_email"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
return generated_email
|
|
|
|
| 49 |
|
| 50 |
+
except json.JSONDecodeError:
|
| 51 |
+
return "Invalid JSON format. Please ensure all inputs are valid JSON."
|
| 52 |
+
except Exception as e:
|
| 53 |
+
return f"Error: {e}"
|
| 54 |
|
| 55 |
+
|
| 56 |
+
# Create Gradio interface
|
| 57 |
+
persona_input = gr.Textbox(
|
| 58 |
+
label="Enter Persona (JSON format)",
|
| 59 |
+
lines=10,
|
| 60 |
+
value='{"name": "John", "city": "New York", "hobbies": "Reading"}',
|
| 61 |
+
placeholder='{"name": "John", "city": "New York", "hobbies": "Reading"}'
|
| 62 |
+
)
|
| 63 |
+
campaign_input = gr.Textbox(
|
| 64 |
+
label="Enter Campaign Details (JSON format)",
|
| 65 |
+
lines=10,
|
| 66 |
+
value='{"subject_line": "Discover Our New Product!", "product": "Backpacks", "discount": "20%", "validity": "Until January 31, 2025"}',
|
| 67 |
+
placeholder='{"subject_line": "Discover Our New Product!", "product": "Backpacks", "discount": "20%", "validity": "Until January 31, 2025"}'
|
| 68 |
+
)
|
| 69 |
+
sender_input = gr.Textbox(
|
| 70 |
+
label="Enter Sender Details (JSON format)",
|
| 71 |
+
lines=5,
|
| 72 |
+
value='{"name": "Jane Doe", "company": "Outdoor Gear Co."}',
|
| 73 |
+
placeholder='{"name": "Jane Doe", "company": "Outdoor Gear Co.", "cta_text": "Shop Now", "cta_link": "https://example.com"}'
|
| 74 |
+
)
|
| 75 |
+
max_attempts_input = gr.Slider(
|
| 76 |
+
label="Max Attempts",
|
| 77 |
+
minimum=1,
|
| 78 |
+
maximum=10,
|
| 79 |
+
step=1,
|
| 80 |
+
value=3,
|
| 81 |
+
interactive=True
|
| 82 |
)
|
| 83 |
+
openai_api_key_input = gr.Textbox(
|
| 84 |
+
label="Enter OpenAI API Key (Leave blank to use HuggingFace Zephyr-7B Beta)",
|
| 85 |
+
type="password",
|
| 86 |
+
placeholder="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
|
| 87 |
+
)
|
| 88 |
+
email_output = gr.Textbox(
|
| 89 |
+
label="Generated Email",
|
| 90 |
+
lines=15,
|
| 91 |
+
interactive=False,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Interface layout
|
| 95 |
+
with gr.Blocks() as interface:
|
| 96 |
+
gr.Markdown(
|
| 97 |
+
"""
|
| 98 |
+
# Personalized Email Generator
|
| 99 |
+
Generate a personalized email based on user persona and campaign details.
|
| 100 |
+
Provide the inputs in JSON format and specify the maximum number of attempts for generation.
|
| 101 |
+
|
| 102 |
+
### Available Models:
|
| 103 |
+
- **OpenAI (gpt-3.5-turbo)**: A highly advanced language model known for its accuracy and contextual understanding, ideal for generating professional and creative emails.
|
| 104 |
+
- **HuggingFace Zephyr-7B Beta**: An open-source model optimized for text generation tasks, offering a cost-effective alternative to proprietary APIs.
|
| 105 |
+
"""
|
| 106 |
+
)
|
| 107 |
+
with gr.Row():
|
| 108 |
+
with gr.Column():
|
| 109 |
+
persona_input.render()
|
| 110 |
+
campaign_input.render()
|
| 111 |
+
sender_input.render()
|
| 112 |
+
max_attempts_input.render()
|
| 113 |
+
openai_api_key_input.render()
|
| 114 |
+
with gr.Column():
|
| 115 |
+
email_output.render()
|
| 116 |
|
| 117 |
+
generate_button = gr.Button("Generate Email")
|
| 118 |
+
generate_button.click(
|
| 119 |
+
fn=generate_email_workflow,
|
| 120 |
+
inputs=[persona_input, campaign_input, sender_input, max_attempts_input, openai_api_key_input],
|
| 121 |
+
outputs=email_output,
|
| 122 |
+
)
|
| 123 |
|
| 124 |
+
# Launch the app
|
| 125 |
if __name__ == "__main__":
|
| 126 |
+
interface.launch()
|
email_generator/__pycache__/main.cpython-312.pyc
ADDED
|
Binary file (17.6 kB). View file
|
|
|
email_generator/main.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydantic import BaseModel
|
| 2 |
+
from typing import Literal
|
| 3 |
+
from pydantic import ValidationError
|
| 4 |
+
from rich.console import Console
|
| 5 |
+
from rich.logging import RichHandler
|
| 6 |
+
import logging
|
| 7 |
+
import re
|
| 8 |
+
from openai import OpenAI
|
| 9 |
+
import os
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
from huggingface_hub import InferenceClient
|
| 12 |
+
from typing import List, Optional
|
| 13 |
+
|
| 14 |
+
# Load environment variables
|
| 15 |
+
load_dotenv()
|
| 16 |
+
|
| 17 |
+
def initialize_client(api_key=None):
|
| 18 |
+
"""Initialize OpenAI client if API key is provided."""
|
| 19 |
+
if api_key:
|
| 20 |
+
return OpenAI(api_key=api_key)
|
| 21 |
+
return None
|
| 22 |
+
|
| 23 |
+
# Setup logging
|
| 24 |
+
console = Console()
|
| 25 |
+
logging.basicConfig(
|
| 26 |
+
level=logging.INFO,
|
| 27 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 28 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 29 |
+
handlers=[RichHandler(console=console)]
|
| 30 |
+
)
|
| 31 |
+
logger = logging.getLogger("email_agent")
|
| 32 |
+
|
| 33 |
+
EMAIL_GENERATOR_PROMPT = """
|
| 34 |
+
Your goal is to write a personalized email for the user based on the provided persona, campaign, and sender details.
|
| 35 |
+
If there are feedback points from previous generations, you should reflect on them to improve your solution.
|
| 36 |
+
|
| 37 |
+
Persona:
|
| 38 |
+
{persona}
|
| 39 |
+
|
| 40 |
+
Campaign Details:
|
| 41 |
+
{campaign}
|
| 42 |
+
|
| 43 |
+
Sender Details:
|
| 44 |
+
{sender}
|
| 45 |
+
|
| 46 |
+
**Output Format Requirement**: The response must strictly adhere to the following format. Ensure that:
|
| 47 |
+
1. All opening tags have corresponding closing tags.
|
| 48 |
+
2. The content inside each tag is complete and relevant to the provided details.
|
| 49 |
+
3. Do not use placeholders such as `[Insert "Shop Now" button]`, `[Company Logo]`, or `[Unsubscribe link]`.
|
| 50 |
+
|
| 51 |
+
```
|
| 52 |
+
<thoughts>
|
| 53 |
+
[Include your understanding of the persona, campaign, sender details.]
|
| 54 |
+
</thoughts>
|
| 55 |
+
|
| 56 |
+
<email>
|
| 57 |
+
[Your email content here,without any placeholders or incomplete references.]
|
| 58 |
+
</email>
|
| 59 |
+
```
|
| 60 |
+
Important: The tags <thoughts> and <email> must always be properly closed.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
EMAIL_EVALUATOR_PROMPT1 = """
|
| 64 |
+
Evaluate the provided email content using the following criteria:
|
| 65 |
+
1. **Personalization Accuracy**: Does the email reflect the persona details and campaign details?
|
| 66 |
+
2. **Tone and Style**: Is the tone engaging and appropriate for the persona? Does it align with the persona's characteristics?
|
| 67 |
+
3. **Clarity and Readability**: Is the email easy to read, with clear and concise sentences? Does it avoid ambiguity and jargon?
|
| 68 |
+
|
| 69 |
+
**Instructions:**
|
| 70 |
+
- Only output "PASS" if all criteria are met with no room for improvement.
|
| 71 |
+
- If the email does not meet the criteria, output "NEEDS_IMPROVEMENT" or "FAIL", followed by specific feedback.
|
| 72 |
+
|
| 73 |
+
**Output Format:**
|
| 74 |
+
{{"evaluation": "<PASS | NEEDS_IMPROVEMENT | FAIL>", "feedback": "<Provide specific feedback explaining what needs to be improved and why.>"}}
|
| 75 |
+
|
| 76 |
+
Persona:
|
| 77 |
+
{persona}
|
| 78 |
+
|
| 79 |
+
Campaign Details:
|
| 80 |
+
{campaign}
|
| 81 |
+
|
| 82 |
+
Sender Details:
|
| 83 |
+
{sender}
|
| 84 |
+
|
| 85 |
+
Email Content:
|
| 86 |
+
{generated_content}
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
EMAIL_EVALUATOR_PROMPT = """
|
| 90 |
+
Evaluate email against these criteria:
|
| 91 |
+
1. Personalization: Match with persona & campaign
|
| 92 |
+
2. Tone: Appropriate for persona
|
| 93 |
+
3. Clarity: Readable, concise language
|
| 94 |
+
|
| 95 |
+
Scoring:
|
| 96 |
+
- Personalization (0-10)
|
| 97 |
+
- Tone Alignment (0-10)
|
| 98 |
+
- Readability (0-10)
|
| 99 |
+
|
| 100 |
+
Output Format:
|
| 101 |
+
{{"evaluation": "<PASS | NEEDS_IMPROVEMENT | FAIL>","feedback": {{"personalization_score": 0,"tone_alignment_score": 0,"readability_score": 0,"improvements": ["Suggestion 1", "Suggestion 2"]}}}}
|
| 102 |
+
|
| 103 |
+
Persona: {persona}
|
| 104 |
+
Campaign: {campaign}
|
| 105 |
+
Sender: {sender}
|
| 106 |
+
Email: {generated_content}
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
def JSON_llm(prompt: str, openai_api_key: str = None, use_huggingface: bool = False, schema: BaseModel = None) -> dict:
|
| 110 |
+
"""
|
| 111 |
+
Calls the LLM to generate a response and validates it against a given schema.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
prompt (str): The input prompt for the LLM.
|
| 115 |
+
schema (BaseModel): A pydantic schema for validating the LLM's output.
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
dict: The validated response from the LLM.
|
| 119 |
+
|
| 120 |
+
Raises:
|
| 121 |
+
ValidationError: If the response doesn't match the schema.
|
| 122 |
+
"""
|
| 123 |
+
# Example: Use llm_call or a similar function to generate a response
|
| 124 |
+
raw_response = llm_call(prompt,model="gpt-3.5-turbo", api_key=openai_api_key, use_huggingface=use_huggingface)
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
# Parse and validate the response against the schema
|
| 128 |
+
parsed_response = schema.parse_raw(raw_response)
|
| 129 |
+
return parsed_response.dict()
|
| 130 |
+
except ValidationError as e:
|
| 131 |
+
# Log or handle the validation error
|
| 132 |
+
logger.error(f"Validation failed: {e}")
|
| 133 |
+
logger.error(f"Raw response: {raw_response}")
|
| 134 |
+
raise ValueError(f"Invalid response format: {raw_response}") from e
|
| 135 |
+
|
| 136 |
+
def extract_response_content(generated_text: str) -> str:
|
| 137 |
+
# Extract content after "Response:"
|
| 138 |
+
response_match = re.search(r"Response:\s*(.*)", generated_text, re.DOTALL)
|
| 139 |
+
return response_match.group(1).strip() if response_match else ""
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def llm_call(prompt: str, model: str = "gpt-3.5-turbo", api_key: str = None, use_huggingface: bool = False) -> str:
|
| 144 |
+
"""
|
| 145 |
+
Call the LLM model (OpenAI or an open-source alternative) and return the response.
|
| 146 |
+
"""
|
| 147 |
+
if api_key and not use_huggingface:
|
| 148 |
+
console.print("Using OpenAI model.")
|
| 149 |
+
client = initialize_client(api_key)
|
| 150 |
+
messages = [{"role": "user", "content": prompt}]
|
| 151 |
+
print("---messages", messages)
|
| 152 |
+
response = client.chat.completions.create(
|
| 153 |
+
model=model,
|
| 154 |
+
messages=messages,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
return response.choices[0].message.content
|
| 158 |
+
|
| 159 |
+
elif use_huggingface:
|
| 160 |
+
console.print("Using Hugging Face model.")
|
| 161 |
+
model = "Qwen/Qwen2.5-72B-Instruct"
|
| 162 |
+
hf_client = InferenceClient(model)
|
| 163 |
+
messages = [{"role": "user", "content": prompt}]
|
| 164 |
+
response = ""
|
| 165 |
+
for message in hf_client.chat_completion(
|
| 166 |
+
messages,
|
| 167 |
+
max_tokens=900,
|
| 168 |
+
stream=True,
|
| 169 |
+
temperature=0.4,
|
| 170 |
+
top_p=0.95,
|
| 171 |
+
):
|
| 172 |
+
token = message.choices[0].delta.content
|
| 173 |
+
response += token
|
| 174 |
+
return response
|
| 175 |
+
|
| 176 |
+
else:
|
| 177 |
+
console.print("Using default simulated response.")
|
| 178 |
+
# Simulated response matching the schema for evaluation
|
| 179 |
+
return '{"evaluation": "NEEDS_IMPROVEMENT", "feedback": "Simulated fallback response for testing purposes."}'
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def extract_xml(text: str, tag: str) -> str:
|
| 183 |
+
"""
|
| 184 |
+
Extracts the content of the specified XML tag from the given text.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
text (str): The text containing the XML.
|
| 188 |
+
tag (str): The XML tag to extract content from.
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
str: The content of the specified XML tag, or an empty string if the tag is not found.
|
| 192 |
+
"""
|
| 193 |
+
match = re.search(f'<{tag}>(.*?)</{tag}>', text, re.DOTALL)
|
| 194 |
+
return match.group(1) if match else ""
|
| 195 |
+
|
| 196 |
+
def extract_xml(text: str, tag: str) -> str:
|
| 197 |
+
"""
|
| 198 |
+
Extracts the content of the specified XML tag from the given text.Next tip
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
text (str): The text containing the XML.
|
| 203 |
+
tag (str): The XML tag to extract content from.
|
| 204 |
+
|
| 205 |
+
Returns:
|
| 206 |
+
str: The content of the specified XML tag, or an empty string if the tag is not found.
|
| 207 |
+
"""
|
| 208 |
+
match = re.search(f'<{tag}>(.*?)</{tag}>', text, re.DOTALL)
|
| 209 |
+
return match.group(1) if match else ""
|
| 210 |
+
|
| 211 |
+
def generate_email(persona: dict, campaign: dict,sender_data: dict , generator_prompt: str, context: str = "", openai_api_key: str = None, use_huggingface: bool = False) -> tuple[str, str]:
|
| 212 |
+
"""Generate a personalized email based on persona, campaign details, and feedback."""
|
| 213 |
+
# Dynamically build the persona and campaign text from the dictionaries
|
| 214 |
+
persona_text = "\n".join([f"{key.replace('_', ' ').capitalize()}: {value}" for key, value in persona.items()])
|
| 215 |
+
campaign_text = "\n".join([f"{key.replace('_', ' ').capitalize()}: {value}" for key, value in campaign.items()])
|
| 216 |
+
sender_text = "\n".join([f"{key.replace('_', ' ').capitalize()}: {value}" for key, value in sender_data.items()])
|
| 217 |
+
full_prompt = generator_prompt.format(persona=persona_text, campaign=campaign_text,sender=sender_text)
|
| 218 |
+
if context:
|
| 219 |
+
full_prompt += f"\nFeedback: {context}"
|
| 220 |
+
console.print("Generating email using LLM...")
|
| 221 |
+
console.print(f"Prompt: {full_prompt}")
|
| 222 |
+
response = llm_call(full_prompt, model="gpt-3.5-turbo", api_key=openai_api_key, use_huggingface=use_huggingface)
|
| 223 |
+
console.print("Generated email response.")
|
| 224 |
+
console.print("[bold green]Generated Email Output:[/bold green]")
|
| 225 |
+
console.print(response)
|
| 226 |
+
return response
|
| 227 |
+
|
| 228 |
+
def evaluate_email(persona: dict, campaign: dict,sender_data: dict , evaluator_prompt: str, generated_content: str,openai_api_key: str = None, use_huggingface: bool = False):
|
| 229 |
+
"""Evaluate if a generated email meets requirements."""
|
| 230 |
+
try:
|
| 231 |
+
print("evaluator_prompt type:", type(evaluator_prompt))
|
| 232 |
+
|
| 233 |
+
# Validate inputs
|
| 234 |
+
if not persona:
|
| 235 |
+
raise ValueError("Persona is required")
|
| 236 |
+
if not campaign:
|
| 237 |
+
raise ValueError("Campaign is required")
|
| 238 |
+
if not generated_content:
|
| 239 |
+
raise ValueError("Generated content is required")
|
| 240 |
+
if sender_data is None:
|
| 241 |
+
raise ValueError("Sender data is required")
|
| 242 |
+
|
| 243 |
+
# Dynamically build text representations
|
| 244 |
+
persona_text = "\n".join([f"{key.replace('_', ' ').capitalize()}: {value}" for key, value in persona.items()])
|
| 245 |
+
campaign_text = "\n".join([f"{key.replace('_', ' ').capitalize()}: {value}" for key, value in campaign.items()])
|
| 246 |
+
sender_text = "\n".join([f"{key.replace('_', ' ').capitalize()}: {value}" for key, value in sender_data.items()])
|
| 247 |
+
|
| 248 |
+
# Format the prompt
|
| 249 |
+
full_prompt = evaluator_prompt.format(
|
| 250 |
+
persona=persona_text,
|
| 251 |
+
campaign=campaign_text,
|
| 252 |
+
sender=sender_text,
|
| 253 |
+
generated_content=generated_content
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
except Exception as e:
|
| 257 |
+
# Catch and print any exceptions
|
| 258 |
+
import traceback
|
| 259 |
+
traceback.print_exc()
|
| 260 |
+
logger.error(f"Error in evaluate_email: {e}")
|
| 261 |
+
print(f"Error details: {e}")
|
| 262 |
+
raise
|
| 263 |
+
|
| 264 |
+
# Build a schema for evaluation
|
| 265 |
+
class Evaluation(BaseModel):
|
| 266 |
+
evaluation: Literal["PASS", "NEEDS_IMPROVEMENT", "FAIL"]
|
| 267 |
+
feedback: Optional[dict] = {
|
| 268 |
+
"personalization_score": 0,
|
| 269 |
+
"tone_alignment_score": 0,
|
| 270 |
+
"readability_score": 0,
|
| 271 |
+
"improvements": []
|
| 272 |
+
}
|
| 273 |
+
console.print("Evaluating generated email...")
|
| 274 |
+
response = JSON_llm(full_prompt, openai_api_key, use_huggingface, Evaluation)
|
| 275 |
+
print("Email evaluation complete.", response)
|
| 276 |
+
evaluation = response["evaluation"]
|
| 277 |
+
feedback = response["feedback"]
|
| 278 |
+
|
| 279 |
+
console.print(f"Evaluation result: {evaluation}")
|
| 280 |
+
if feedback:
|
| 281 |
+
console.print(f"Feedback: {feedback}")
|
| 282 |
+
|
| 283 |
+
console.print("[bold yellow]Evaluation Feedback:[/bold yellow]")
|
| 284 |
+
console.print(feedback)
|
| 285 |
+
|
| 286 |
+
return evaluation, feedback
|
| 287 |
+
|
| 288 |
+
def loop_email_workflow(persona: dict, campaign: dict,sender_data: dict ,evaluator_prompt: str, generator_prompt: str, max_tries: int = 5, openai_api_key: str = None, use_huggingface: bool = False) -> dict:
|
| 289 |
+
"""Keep generating and evaluating emails until the evaluator passes or max tries reached."""
|
| 290 |
+
memory = [] # Store previous responses
|
| 291 |
+
llm_hits = 0
|
| 292 |
+
tokens_used = 0
|
| 293 |
+
cost = 0
|
| 294 |
+
|
| 295 |
+
console.print("Starting email generation workflow...")
|
| 296 |
+
if not persona or not campaign or not sender_data:
|
| 297 |
+
raise ValueError("Persona, campaign, and sender data are required for email generation.")
|
| 298 |
+
|
| 299 |
+
response = generate_email(persona, campaign,sender_data, generator_prompt, openai_api_key=openai_api_key, use_huggingface=use_huggingface)
|
| 300 |
+
llm_hits += 1
|
| 301 |
+
tokens_used += len(response.split()) # Approximation of tokens
|
| 302 |
+
memory.append(response)
|
| 303 |
+
|
| 304 |
+
for attempt in range(max_tries):
|
| 305 |
+
console.print(f"Attempt {attempt + 1} to generate a successful email.")
|
| 306 |
+
try:
|
| 307 |
+
email_content = extract_xml(response, "email")
|
| 308 |
+
console.print(f"Email content: {email_content}")
|
| 309 |
+
evaluation, feedback = evaluate_email(persona, campaign,sender_data, evaluator_prompt, email_content, openai_api_key=openai_api_key, use_huggingface=use_huggingface)
|
| 310 |
+
except ValueError as e:
|
| 311 |
+
console.error(f"Evaluation failed: {e}")
|
| 312 |
+
break
|
| 313 |
+
|
| 314 |
+
llm_hits += 1
|
| 315 |
+
tokens_used += len(str(feedback).split())
|
| 316 |
+
|
| 317 |
+
if evaluation == "PASS":
|
| 318 |
+
cost = tokens_used * 0.0001 # Example cost calculation
|
| 319 |
+
console.print("Email generation completed successfully.")
|
| 320 |
+
return {
|
| 321 |
+
"final_email": email_content,
|
| 322 |
+
"llm_hits": llm_hits,
|
| 323 |
+
"tokens_used": tokens_used,
|
| 324 |
+
"cost": cost,
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
context = "\n".join([
|
| 328 |
+
"Previous attempts:",
|
| 329 |
+
*[f"- {m}" for m in memory],
|
| 330 |
+
f"Feedback: {feedback}"
|
| 331 |
+
])
|
| 332 |
+
response = generate_email(persona, campaign,sender_data, generator_prompt, context, openai_api_key=openai_api_key, use_huggingface=use_huggingface)
|
| 333 |
+
llm_hits += 1
|
| 334 |
+
tokens_used += len(response.split())
|
| 335 |
+
memory.append(response)
|
| 336 |
+
|
| 337 |
+
logger.warning("Max attempts reached without generating a successful email.")
|
| 338 |
+
cost = tokens_used * 0.0001
|
| 339 |
+
return {
|
| 340 |
+
"final_email": None,
|
| 341 |
+
"llm_hits": llm_hits,
|
| 342 |
+
"tokens_used": tokens_used,
|
| 343 |
+
"cost": cost,
|
| 344 |
+
"message": "Max attempts reached without a PASS.",
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
# Example user persona
|
| 349 |
+
def example():
|
| 350 |
+
persona_data = {
|
| 351 |
+
"name": "Alice Smith",
|
| 352 |
+
"city": "San Francisco",
|
| 353 |
+
"hobbies": "Hiking, Cooking",
|
| 354 |
+
"purchase_history": "Outdoor Gear"
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
# Example campaign details
|
| 358 |
+
campaign_data = {
|
| 359 |
+
"subject_line": "Discover Your Next Outdoor Adventure",
|
| 360 |
+
"product": "New Hiking Backpacks",
|
| 361 |
+
"discount": "20% off",
|
| 362 |
+
"validity": "Until January 31st, 2025",
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
# Example sender details
|
| 366 |
+
sender_data = {
|
| 367 |
+
"name": "John Doe",
|
| 368 |
+
"email": "[email protected]"
|
| 369 |
+
}
|
| 370 |
+
|
| 371 |
+
# Generate and evaluate emails
|
| 372 |
+
workflow_result = loop_email_workflow(
|
| 373 |
+
persona=persona_data,
|
| 374 |
+
campaign=campaign_data,
|
| 375 |
+
sender_data=sender_data,
|
| 376 |
+
evaluator_prompt=EMAIL_EVALUATOR_PROMPT,
|
| 377 |
+
generator_prompt=EMAIL_GENERATOR_PROMPT,
|
| 378 |
+
max_tries=5,
|
| 379 |
+
openai_api_key=os.getenv("OPENAI_API_KEY"),
|
| 380 |
+
use_huggingface=False
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
# Display final result
|
| 384 |
+
if workflow_result["final_email"]:
|
| 385 |
+
console.print("Final Email Generated Successfully:")
|
| 386 |
+
console.print("[bold green]Final Email Content:[/bold green]")
|
| 387 |
+
console.print(workflow_result["final_email"])
|
| 388 |
+
else:
|
| 389 |
+
logger.error("Failed to generate a passing email after maximum attempts.")
|
| 390 |
+
console.print("[bold red]Workflow Result:[/bold red]")
|
| 391 |
+
console.print(workflow_result)
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
if __name__ == "__main__":
|
| 395 |
+
example()
|
email_generator/util.py
ADDED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -1 +1,5 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pydantic
|
| 2 |
+
rich
|
| 3 |
+
openai
|
| 4 |
+
huggingface_hub
|
| 5 |
+
python-dotenv
|