import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login import time import torch.quantization # Directly assign your Hugging Face token here hf_token = "your_hugging_face_api_token" # Log in to Hugging Face login(token=hf_token) # Load the Mixtral-8x7B-Instruct model and tokenizer with authorization header model_name = 'mistralai/Mistral-7B-Instruct-v0.3' headers = {"Authorization": f"Bearer {hf_token}"} # Ensure sentencepiece is installed try: import sentencepiece except ImportError: raise ImportError("The sentencepiece library is required for this tokenizer. Please install it with `pip install sentencepiece`.") # Start time to measure execution time start_time = time.time() # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token) # Quantize the model quantized_model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8) # Check if a GPU is available and if not, fall back to CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") quantized_model.to(device) # Measure time for loading tokenizer, model, and quantization loading_time = time.time() - start_time print(f"Time taken to load tokenizer, model, and quantize: {loading_time:.2f} seconds") # Example text input text_input = "How did Tesla perform in Q1 2024?" # Start time for inference inference_start_time = time.time() # Tokenize the input text inputs = tokenizer(text_input, return_tensors="pt").to(device) # Measure time for tokenization tokenization_time = time.time() - inference_start_time # Generate a response outputs = quantized_model.generate(**inputs, max_length=150, do_sample=False) # Measure time for inference inference_time = time.time() - inference_start_time print(f"Time taken for inference with quantized model: {inference_time:.2f} seconds") # Decode the generated tokens to a readable string response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Print the response print(f"Generated response: {response}") # Total execution time total_time = time.time() - start_time print(f"Total execution time with quantized model: {total_time:.2f} seconds")