import os import json import re import gradio as gr import pandas as pd from tempfile import NamedTemporaryFile from typing import List from langchain_core.prompts import ChatPromptTemplate from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain_core.output_parsers import StrOutputParser from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.llms import HuggingFaceHub from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_core.documents import Document from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") # Memory database to store question-answer pairs memory_database = {} conversation_history = [] def load_and_split_document_basic(file): """Loads and splits the document into pages.""" loader = PyPDFLoader(file.name) data = loader.load_and_split() return data def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]: """Loads and splits the document into chunks.""" loader = PyPDFLoader(file.name) pages = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len, ) chunks = text_splitter.split_documents(pages) return chunks def get_embeddings(): return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") def create_or_update_database(data, embeddings): if os.path.exists("faiss_database"): db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) db.add_documents(data) else: db = FAISS.from_documents(data, embeddings) db.save_local("faiss_database") def clear_cache(): if os.path.exists("faiss_database"): os.remove("faiss_database") return "Cache cleared successfully." else: return "No cache to clear." def get_similarity(text1, text2): vectorizer = TfidfVectorizer().fit_transform([text1, text2]) return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0] prompt = """ Answer the question based on the following information: Conversation History: {history} Context from documents: {context} Current Question: {question} If the question is referring to the conversation history, use that information to answer. If the question is not related to the conversation history, use the context from documents to answer. If you don't have enough information to answer, say so. Provide a concise and direct answer to the question: """ def get_model(temperature, top_p, repetition_penalty): return HuggingFaceHub( repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={ "temperature": temperature, "top_p": top_p, "repetition_penalty": repetition_penalty, "max_length": 1000 }, huggingfacehub_api_token=huggingface_token ) def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): full_response = "" for i in range(max_chunks): chunk = model(prompt + full_response, max_new_tokens=max_tokens) chunk = chunk.strip() if chunk.endswith((".", "!", "?")): full_response += chunk break full_response += chunk return full_response.strip() def manage_conversation_history(question, answer, history, max_history=5): history.append({"question": question, "answer": answer}) if len(history) > max_history: history.pop(0) return history def is_related_to_history(question, history, threshold=0.3): if not history: return False history_text = " ".join([f"{h['question']} {h['answer']}" for h in history]) similarity = get_similarity(question, history_text) return similarity > threshold def ask_question(question, temperature, top_p, repetition_penalty): global conversation_history if not question: return "Please enter a question." if question in memory_database: answer = memory_database[question] else: embed = get_embeddings() database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) model = get_model(temperature, top_p, repetition_penalty) history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history]) if is_related_to_history(question, conversation_history): context_str = "No additional context needed. Please refer to the conversation history." else: retriever = database.as_retriever() relevant_docs = retriever.get_relevant_documents(question) context_str = "\n".join([doc.page_content for doc in relevant_docs]) prompt_val = ChatPromptTemplate.from_template(prompt) formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question) answer = generate_chunked_response(model, formatted_prompt) answer = re.split(r'Question:|Current Question:', answer)[-1].strip() memory_database[question] = answer conversation_history = manage_conversation_history(question, answer, conversation_history) return answer def update_vectors(files, use_recursive_splitter): if not files: return "Please upload at least one PDF file." embed = get_embeddings() total_chunks = 0 for file in files: if use_recursive_splitter: data = load_and_split_document_recursive(file) else: data = load_and_split_document_basic(file) create_or_update_database(data, embed) total_chunks += len(data) return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." def extract_db_to_excel(): embed = get_embeddings() database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) documents = database.docstore._dict.values() data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] df = pd.DataFrame(data) with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: excel_path = tmp.name df.to_excel(excel_path, index=False) return excel_path def export_memory_db_to_excel(): data = [{"question": question, "answer": answer} for question, answer in memory_database.items()] df_memory = pd.DataFrame(data) data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history] df_history = pd.DataFrame(data_history) with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: excel_path = tmp.name with pd.ExcelWriter(excel_path, engine='openpyxl') as writer: df_memory.to_excel(writer, sheet_name='Memory Database', index=False) df_history.to_excel(writer, sheet_name='Conversation History', index=False) return excel_path # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Chat with your PDF documents") with gr.Row(): file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) update_button = gr.Button("Update Vector Store") use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False) update_output = gr.Textbox(label="Update Status") update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output) with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot(label="Conversation") question_input = gr.Textbox(label="Ask a question about your documents") submit_button = gr.Button("Submit") with gr.Column(scale=1): temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) def chat(question, history): answer = ask_question(question, temperature_slider.value, top_p_slider.value, repetition_penalty_slider.value) history.append((question, answer)) return "", history submit_button.click(chat, inputs=[question_input, chatbot], outputs=[question_input, chatbot]) extract_button = gr.Button("Extract Database to Excel") excel_output = gr.File(label="Download Excel File") extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output) export_memory_button = gr.Button("Export Memory Database to Excel") memory_excel_output = gr.File(label="Download Memory Excel File") export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output) clear_button = gr.Button("Clear Cache") clear_output = gr.Textbox(label="Cache Status") clear_button.click(clear_cache, inputs=[], outputs=clear_output) if __name__ == "__main__": demo.launch()