Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,6 +21,15 @@ from langchain_community.llms import HuggingFaceHub
|
|
21 |
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings, LlmStructuredOutputType
|
22 |
from pydantic import BaseModel, Field
|
23 |
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputType
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
print("Available LlmStructuredOutputType options:")
|
26 |
for option in LlmStructuredOutputType:
|
@@ -216,55 +225,114 @@ def get_messages_formatter_type(model_name):
|
|
216 |
def respond(
|
217 |
message,
|
218 |
history: list[tuple[str, str]],
|
|
|
219 |
system_message,
|
220 |
max_tokens,
|
221 |
temperature,
|
222 |
top_p,
|
|
|
223 |
repeat_penalty,
|
224 |
-
top_k=50,
|
225 |
-
max_tokens_per_summary=2048
|
226 |
):
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
search_tool = WebSearchTool(
|
231 |
-
llm_provider=
|
232 |
message_formatter_type=chat_template,
|
233 |
max_tokens_search_results=12000,
|
234 |
max_tokens_per_summary=2048,
|
235 |
)
|
236 |
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
for msn in history:
|
240 |
user = {"role": Roles.user, "content": msn[0]}
|
241 |
assistant = {"role": Roles.assistant, "content": msn[1]}
|
242 |
messages.add_message(user)
|
243 |
messages.add_message(assistant)
|
244 |
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
outputs = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
{search_result}
|
254 |
|
255 |
-
|
|
|
|
|
256 |
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
# Generate citations
|
261 |
-
citation_prompt = "Cite the sources you used in your response."
|
262 |
-
citing_sources = model(citation_prompt)
|
263 |
-
|
264 |
outputs += "\n\nSources:\n"
|
265 |
-
outputs += citing_sources
|
266 |
-
|
267 |
-
return outputs
|
268 |
|
269 |
|
270 |
# Gradio interface
|
|
|
21 |
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings, LlmStructuredOutputType
|
22 |
from pydantic import BaseModel, Field
|
23 |
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputType
|
24 |
+
from llama_cpp import Llama
|
25 |
+
from llama_cpp_agent import LlamaCppPythonProvider, LlamaCppAgent
|
26 |
+
from llama_cpp_agent.chat_history import BasicChatHistory
|
27 |
+
from llama_cpp_agent.chat_history.messages import Roles
|
28 |
+
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings, LlmStructuredOutputType
|
29 |
+
from llama_cpp_agent.tools import WebSearchTool
|
30 |
+
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
|
31 |
+
from pydantic import BaseModel, Field
|
32 |
+
from typing import List
|
33 |
|
34 |
print("Available LlmStructuredOutputType options:")
|
35 |
for option in LlmStructuredOutputType:
|
|
|
225 |
def respond(
|
226 |
message,
|
227 |
history: list[tuple[str, str]],
|
228 |
+
model,
|
229 |
system_message,
|
230 |
max_tokens,
|
231 |
temperature,
|
232 |
top_p,
|
233 |
+
top_k,
|
234 |
repeat_penalty,
|
|
|
|
|
235 |
):
|
236 |
+
global llm
|
237 |
+
global llm_model
|
238 |
+
|
239 |
+
chat_template = get_messages_formatter_type(model)
|
240 |
+
|
241 |
+
if llm is None or llm_model != model:
|
242 |
+
llm = Llama(
|
243 |
+
model_path=f"models/{model}",
|
244 |
+
flash_attn=True,
|
245 |
+
n_gpu_layers=81,
|
246 |
+
n_batch=1024,
|
247 |
+
n_ctx=get_context_by_model(model),
|
248 |
+
)
|
249 |
+
llm_model = model
|
250 |
+
|
251 |
+
provider = LlamaCppPythonProvider(llm)
|
252 |
+
logging.info(f"Loaded chat examples: {chat_template}")
|
253 |
+
|
254 |
search_tool = WebSearchTool(
|
255 |
+
llm_provider=provider,
|
256 |
message_formatter_type=chat_template,
|
257 |
max_tokens_search_results=12000,
|
258 |
max_tokens_per_summary=2048,
|
259 |
)
|
260 |
|
261 |
+
web_search_agent = LlamaCppAgent(
|
262 |
+
provider,
|
263 |
+
system_prompt=web_search_system_prompt,
|
264 |
+
predefined_messages_formatter_type=chat_template,
|
265 |
+
debug_output=True,
|
266 |
+
)
|
267 |
|
268 |
+
answer_agent = LlamaCppAgent(
|
269 |
+
provider,
|
270 |
+
system_prompt=research_system_prompt,
|
271 |
+
predefined_messages_formatter_type=chat_template,
|
272 |
+
debug_output=True,
|
273 |
+
)
|
274 |
+
|
275 |
+
settings = provider.get_provider_default_settings()
|
276 |
+
settings.stream = False
|
277 |
+
settings.temperature = temperature
|
278 |
+
settings.top_k = top_k
|
279 |
+
settings.top_p = top_p
|
280 |
+
settings.max_tokens = max_tokens
|
281 |
+
settings.repeat_penalty = repeat_penalty
|
282 |
+
|
283 |
+
output_settings = LlmStructuredOutputSettings.from_functions(
|
284 |
+
[search_tool.get_tool()]
|
285 |
+
)
|
286 |
+
|
287 |
+
messages = BasicChatHistory()
|
288 |
for msn in history:
|
289 |
user = {"role": Roles.user, "content": msn[0]}
|
290 |
assistant = {"role": Roles.assistant, "content": msn[1]}
|
291 |
messages.add_message(user)
|
292 |
messages.add_message(assistant)
|
293 |
|
294 |
+
result = web_search_agent.get_chat_response(
|
295 |
+
message,
|
296 |
+
llm_sampling_settings=settings,
|
297 |
+
structured_output_settings=output_settings,
|
298 |
+
add_message_to_chat_history=False,
|
299 |
+
add_response_to_chat_history=False,
|
300 |
+
print_output=False,
|
301 |
+
)
|
302 |
|
303 |
outputs = ""
|
304 |
+
settings.stream = True
|
305 |
+
|
306 |
+
response_text = answer_agent.get_chat_response(
|
307 |
+
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" + result[0]["return_value"],
|
308 |
+
role=Roles.tool,
|
309 |
+
llm_sampling_settings=settings,
|
310 |
+
chat_history=messages,
|
311 |
+
returns_streaming_generator=True,
|
312 |
+
print_output=False,
|
313 |
+
)
|
314 |
|
315 |
+
for text in response_text:
|
316 |
+
outputs += text
|
317 |
+
yield outputs
|
|
|
318 |
|
319 |
+
output_settings = LlmStructuredOutputSettings.from_pydantic_models(
|
320 |
+
[CitingSources], LlmStructuredOutputType.object_instance
|
321 |
+
)
|
322 |
|
323 |
+
citing_sources = answer_agent.get_chat_response(
|
324 |
+
"Cite the sources you used in your response.",
|
325 |
+
role=Roles.tool,
|
326 |
+
llm_sampling_settings=settings,
|
327 |
+
chat_history=messages,
|
328 |
+
returns_streaming_generator=False,
|
329 |
+
structured_output_settings=output_settings,
|
330 |
+
print_output=False,
|
331 |
+
)
|
332 |
|
|
|
|
|
|
|
|
|
333 |
outputs += "\n\nSources:\n"
|
334 |
+
outputs += "\n".join(citing_sources.sources)
|
335 |
+
yield outputs
|
|
|
336 |
|
337 |
|
338 |
# Gradio interface
|