Shreyas094 commited on
Commit
85693d5
·
verified ·
1 Parent(s): 956e09c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -217,14 +217,14 @@ def get_model(temperature, top_p, repetition_penalty):
217
  "temperature": temperature,
218
  "top_p": top_p,
219
  "repetition_penalty": repetition_penalty,
220
- "max_length": 1000
221
  },
222
  huggingfacehub_api_token=huggingface_token
223
  )
224
 
225
- MAX_PROMPT_CHARS = 24000 # Adjust based on your model's limitations
226
 
227
- def chunk_text(text: str, max_chunk_size: int = 1000) -> List[str]:
228
  chunks = []
229
  current_chunk = ""
230
  for sentence in re.split(r'(?<=[.!?])\s+', text):
@@ -244,7 +244,7 @@ def get_most_relevant_chunks(question: str, chunks: List[str], top_k: int = 3) -
244
  top_indices = np.argsort(similarities)[-top_k:]
245
  return [chunks[i] for i in top_indices]
246
 
247
- def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
248
  full_response = ""
249
  for i in range(max_chunks):
250
  try:
@@ -395,8 +395,8 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search, c
395
  database = None
396
 
397
  max_attempts = 3
398
- max_input_tokens = 31000 # Leave room for the model's response
399
- max_output_tokens = 1000
400
 
401
  if web_search:
402
  contextualized_question, topics, entity_tracker, _ = chatbot.process_question(question)
 
217
  "temperature": temperature,
218
  "top_p": top_p,
219
  "repetition_penalty": repetition_penalty,
220
+ "max_length": 800
221
  },
222
  huggingfacehub_api_token=huggingface_token
223
  )
224
 
225
+ MAX_PROMPT_CHARS = 20000 # Adjust based on your model's limitations
226
 
227
+ def chunk_text(text: str, max_chunk_size: int = 800) -> List[str]:
228
  chunks = []
229
  current_chunk = ""
230
  for sentence in re.split(r'(?<=[.!?])\s+', text):
 
244
  top_indices = np.argsort(similarities)[-top_k:]
245
  return [chunks[i] for i in top_indices]
246
 
247
+ def generate_chunked_response(model, prompt, max_tokens=800, max_chunks=5):
248
  full_response = ""
249
  for i in range(max_chunks):
250
  try:
 
395
  database = None
396
 
397
  max_attempts = 3
398
+ max_input_tokens = 20000 # Leave room for the model's response
399
+ max_output_tokens = 800
400
 
401
  if web_search:
402
  contextualized_question, topics, entity_tracker, _ = chatbot.process_question(question)