Spaces:
Sleeping
Sleeping
import os | |
import json | |
import re | |
import gradio as gr | |
import requests | |
from duckduckgo_search import DDGS | |
from typing import List | |
from pydantic import BaseModel, Field | |
from tempfile import NamedTemporaryFile | |
from langchain_community.vectorstores import FAISS | |
from langchain_core.vectorstores import VectorStore | |
from langchain_core.documents import Document | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from llama_parse import LlamaParse | |
from langchain_core.documents import Document | |
from huggingface_hub import InferenceClient | |
import inspect | |
import logging | |
import shutil | |
# Set up basic configuration for logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Environment variables and configurations | |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY") | |
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID") | |
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN") | |
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/" | |
print(f"ACCOUNT_ID: {ACCOUNT_ID}") | |
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set") | |
MODELS = [ | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"@cf/meta/llama-3.1-8b-instruct", | |
"mistralai/Mistral-Nemo-Instruct-2407" | |
] | |
# Initialize LlamaParse | |
llama_parser = LlamaParse( | |
api_key=llama_cloud_api_key, | |
result_type="markdown", | |
num_workers=4, | |
verbose=True, | |
language="en", | |
) | |
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]: | |
"""Loads and splits the document into pages.""" | |
if parser == "pypdf": | |
loader = PyPDFLoader(file.name) | |
return loader.load_and_split() | |
elif parser == "llamaparse": | |
try: | |
documents = llama_parser.load_data(file.name) | |
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents] | |
except Exception as e: | |
print(f"Error using Llama Parse: {str(e)}") | |
print("Falling back to PyPDF parser") | |
loader = PyPDFLoader(file.name) | |
return loader.load_and_split() | |
else: | |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.") | |
def get_embeddings(): | |
return HuggingFaceEmbeddings(model_name="avsolatorio/GIST-Embedding-v0") | |
# Add this at the beginning of your script, after imports | |
DOCUMENTS_FILE = "uploaded_documents.json" | |
def load_documents(): | |
if os.path.exists(DOCUMENTS_FILE): | |
with open(DOCUMENTS_FILE, "r") as f: | |
return json.load(f) | |
return [] | |
def save_documents(documents): | |
with open(DOCUMENTS_FILE, "w") as f: | |
json.dump(documents, f) | |
# Replace the global uploaded_documents with this | |
uploaded_documents = load_documents() | |
# Modify the update_vectors function | |
def update_vectors(files, parser): | |
global uploaded_documents | |
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}") | |
if not files: | |
logging.warning("No files provided for update_vectors") | |
return "Please upload at least one PDF file.", display_documents() | |
embed = get_embeddings() | |
total_chunks = 0 | |
all_data = [] | |
for file in files: | |
logging.info(f"Processing file: {file.name}") | |
try: | |
data = load_document(file, parser) | |
if not data: | |
logging.warning(f"No chunks loaded from {file.name}") | |
continue | |
logging.info(f"Loaded {len(data)} chunks from {file.name}") | |
all_data.extend(data) | |
total_chunks += len(data) | |
if not any(doc["name"] == file.name for doc in uploaded_documents): | |
uploaded_documents.append({"name": file.name, "selected": True}) | |
logging.info(f"Added new document to uploaded_documents: {file.name}") | |
else: | |
logging.info(f"Document already exists in uploaded_documents: {file.name}") | |
except Exception as e: | |
logging.error(f"Error processing file {file.name}: {str(e)}") | |
logging.info(f"Total chunks processed: {total_chunks}") | |
if not all_data: | |
logging.warning("No valid data extracted from uploaded files") | |
return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents() | |
try: | |
if os.path.exists("faiss_database"): | |
logging.info("Updating existing FAISS database") | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
database.add_documents(all_data) | |
else: | |
logging.info("Creating new FAISS database") | |
database = FAISS.from_documents(all_data, embed) | |
database.save_local("faiss_database") | |
logging.info("FAISS database saved") | |
except Exception as e: | |
logging.error(f"Error updating FAISS database: {str(e)}") | |
return f"Error updating vector store: {str(e)}", display_documents() | |
# Save the updated list of documents | |
save_documents(uploaded_documents) | |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents() | |
def delete_documents(selected_docs): | |
global uploaded_documents | |
if not selected_docs: | |
return "No documents selected for deletion.", display_documents() | |
embed = get_embeddings() | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
deleted_docs = [] | |
docs_to_keep = [] | |
for doc in database.docstore._dict.values(): | |
if doc.metadata.get("source") not in selected_docs: | |
docs_to_keep.append(doc) | |
else: | |
deleted_docs.append(doc.metadata.get("source", "Unknown")) | |
# Print debugging information | |
logging.info(f"Total documents before deletion: {len(database.docstore._dict)}") | |
logging.info(f"Documents to keep: {len(docs_to_keep)}") | |
logging.info(f"Documents to delete: {len(deleted_docs)}") | |
if not docs_to_keep: | |
# If all documents are deleted, remove the FAISS database directory | |
if os.path.exists("faiss_database"): | |
shutil.rmtree("faiss_database") | |
logging.info("All documents deleted. Removed FAISS database directory.") | |
else: | |
# Create new FAISS index with remaining documents | |
new_database = FAISS.from_documents(docs_to_keep, embed) | |
new_database.save_local("faiss_database") | |
logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.") | |
# Update uploaded_documents list | |
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs] | |
save_documents(uploaded_documents) | |
return f"Deleted documents: {', '.join(deleted_docs)}", display_documents() | |
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False): | |
print(f"Starting generate_chunked_response with {num_calls} calls") | |
full_response = "" | |
messages = [{"role": "user", "content": prompt}] | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
# Cloudflare API | |
for i in range(num_calls): | |
print(f"Starting Cloudflare API call {i+1}") | |
if should_stop: | |
print("Stop clicked, breaking loop") | |
break | |
try: | |
response = requests.post( | |
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct", | |
headers={"Authorization": f"Bearer {API_TOKEN}"}, | |
json={ | |
"stream": true, | |
"messages": [ | |
{"role": "system", "content": "You are a friendly assistant"}, | |
{"role": "user", "content": prompt} | |
], | |
"max_tokens": max_tokens, | |
"temperature": temperature | |
}, | |
stream=true | |
) | |
for line in response.iter_lines(): | |
if should_stop: | |
print("Stop clicked during streaming, breaking") | |
break | |
if line: | |
try: | |
json_data = json.loads(line.decode('utf-8').split('data: ')[1]) | |
chunk = json_data['response'] | |
full_response += chunk | |
except json.JSONDecodeError: | |
continue | |
print(f"Cloudflare API call {i+1} completed") | |
except Exception as e: | |
print(f"Error in generating response from Cloudflare: {str(e)}") | |
else: | |
# Original Hugging Face API logic | |
client = InferenceClient(model, token=huggingface_token) | |
for i in range(num_calls): | |
print(f"Starting Hugging Face API call {i+1}") | |
if should_stop: | |
print("Stop clicked, breaking loop") | |
break | |
try: | |
for message in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
stream=True, | |
): | |
if should_stop: | |
print("Stop clicked during streaming, breaking") | |
break | |
if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
chunk = message.choices[0].delta.content | |
full_response += chunk | |
print(f"Hugging Face API call {i+1} completed") | |
except Exception as e: | |
print(f"Error in generating response from Hugging Face: {str(e)}") | |
# Clean up the response | |
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL) | |
clean_response = clean_response.replace("Using the following context:", "").strip() | |
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip() | |
# Remove duplicate paragraphs and sentences | |
paragraphs = clean_response.split('\n\n') | |
unique_paragraphs = [] | |
for paragraph in paragraphs: | |
if paragraph not in unique_paragraphs: | |
sentences = paragraph.split('. ') | |
unique_sentences = [] | |
for sentence in sentences: | |
if sentence not in unique_sentences: | |
unique_sentences.append(sentence) | |
unique_paragraphs.append('. '.join(unique_sentences)) | |
final_response = '\n\n'.join(unique_paragraphs) | |
print(f"Final clean response: {final_response[:100]}...") | |
return final_response | |
def duckduckgo_search(query): | |
with DDGS() as ddgs: | |
results = ddgs.text(query, max_results=10) | |
return results | |
class CitingSources(BaseModel): | |
sources: List[str] = Field( | |
..., | |
description="List of sources to cite. Should be an URL of the source." | |
) | |
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls): | |
if not message.strip(): | |
return "", history | |
history = history + [(message, "")] | |
try: | |
for response in respond(message, history, model, temperature, num_calls, use_web_search): | |
history[-1] = (message, response) | |
yield history | |
except gr.CancelledError: | |
yield history | |
except Exception as e: | |
logging.error(f"Unexpected error in chatbot_interface: {str(e)}") | |
history[-1] = (message, f"An unexpected error occurred: {str(e)}") | |
yield history | |
def retry_last_response(history, use_web_search, model, temperature, num_calls): | |
if not history: | |
return history | |
last_user_msg = history[-1][0] | |
history = history[:-1] # Remove the last response | |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls) | |
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs, instruction_key): | |
logging.info(f"User Query: {message}") | |
logging.info(f"Model Used: {model}") | |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}") | |
logging.info(f"Selected Documents: {selected_docs}") | |
logging.info(f"Instruction Key: {instruction_key}") | |
try: | |
if instruction_key and instruction_key != "None": | |
# This is a summary generation request | |
instruction = INSTRUCTION_PROMPTS[instruction_key] | |
context_str = get_context_for_summary(selected_docs) | |
message = f"{instruction}\n\nUsing the following context from the PDF documents:\n{context_str}\nGenerate a detailed summary." | |
use_web_search = False # Ensure we use PDF search for summaries | |
if use_web_search: | |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature): | |
response = f"{main_content}\n\n{sources}" | |
first_line = response.split('\n')[0] if response else '' | |
# logging.info(f"Generated Response (first line): {first_line}") | |
yield response | |
else: | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
retriever = database.as_retriever() | |
# Filter relevant documents based on user selection | |
all_relevant_docs = retriever.get_relevant_documents(message) | |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs] | |
if not relevant_docs: | |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query." | |
return | |
context_str = "\n".join([doc.page_content for doc in relevant_docs]) | |
else: | |
context_str = "No documents available." | |
yield "No documents available. Please upload PDF documents to answer questions." | |
return | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
# Use Cloudflare API | |
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"): | |
first_line = partial_response.split('\n')[0] if partial_response else '' | |
# logging.info(f"Generated Response (first line): {first_line}") | |
yield partial_response | |
else: | |
# Use Hugging Face API | |
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature): | |
first_line = partial_response.split('\n')[0] if partial_response else '' | |
# logging.info(f"Generated Response (first line): {first_line}") | |
yield partial_response | |
except Exception as e: | |
logging.error(f"Error with {model}: {str(e)}") | |
if "microsoft/Phi-3-mini-4k-instruct" in model: | |
logging.info("Falling back to Mistral model due to Phi-3 error") | |
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3" | |
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs, instruction_key) | |
else: | |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model." | |
logging.basicConfig(level=logging.DEBUG) | |
def get_context_for_summary(selected_docs): | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
retriever = database.as_retriever(search_kwargs={"k": 10}) # Retrieve top 5 most relevant chunks | |
# Create a generic query that covers common financial summary topics | |
generic_query = "financial performance revenue profit assets liabilities cash flow key metrics highlights" | |
relevant_docs = retriever.get_relevant_documents(generic_query) | |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs] | |
if not filtered_docs: | |
return "No relevant information found in the selected documents for summary generation." | |
context_str = "\n".join([doc.page_content for doc in filtered_docs]) | |
return context_str | |
else: | |
return "No documents available for summary generation." | |
def get_context_for_query(query, selected_docs): | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
retriever = database.as_retriever(search_kwargs={"k": 3}) # Retrieve top 3 most relevant chunks | |
relevant_docs = retriever.get_relevant_documents(query) | |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs] | |
if not filtered_docs: | |
return "No relevant information found in the selected documents for the given query." | |
context_str = "\n".join([doc.page_content for doc in filtered_docs]) | |
return context_str | |
else: | |
return "No documents available to answer the query." | |
def validate_response(initial_response, context, query, model, temperature=0.1): | |
validation_prompt = f"""Given the following context and initial response to the query "{query}": | |
Context: | |
{context} | |
Initial Response: | |
{initial_response} | |
You are an expert assistant tasked with carefully validating the initial response against the provided context. Remove any hallucinations, irrelevant details, or factually incorrect information. Generate a revised response that is accurate and directly supported by the context. If any information cannot be verified from the context, explicitly state that it could not be confirmed. After writing the revised response, provide a list of all sources used. | |
Revised Response: | |
""" | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
return get_response_from_cloudflare(prompt=validation_prompt, context="", query="", num_calls=1, temperature=temperature, search_type="validation") | |
else: | |
client = InferenceClient(model, token=huggingface_token) | |
revised_response = "" | |
for message in client.chat_completion( | |
messages=[{"role": "user", "content": validation_prompt}], | |
max_tokens=10000, | |
temperature=temperature, | |
stream=True, | |
): | |
if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
chunk = message.choices[0].delta.content | |
revised_response += chunk | |
yield revised_response | |
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"): | |
headers = { | |
"Authorization": f"Bearer {API_TOKEN}", | |
"Content-Type": "application/json" | |
} | |
model = "@cf/meta/llama-3.1-8b-instruct" | |
if search_type == "pdf": | |
instruction = f"""Using the following context from the PDF documents: | |
{context} | |
Write a detailed and complete response that answers the following user question: '{query}'""" | |
elif search_type == "web": | |
instruction = f"""Using the following context: | |
{context} | |
Write a detailed and complete research document that fulfills the following user request: '{query}' | |
After writing the document, please provide a list of sources used in your response.""" | |
elif search_type == "validation": | |
instruction = prompt # For validation, use the provided prompt directly | |
else: | |
raise ValueError("Invalid search_type") | |
inputs = [ | |
{"role": "system", "content": instruction}, | |
{"role": "user", "content": query if search_type != "validation" else ""} | |
] | |
payload = { | |
"messages": inputs, | |
"stream": True, | |
"temperature": temperature, | |
"max_tokens": 32000 | |
} | |
full_response = "" | |
for i in range(num_calls): | |
try: | |
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response: | |
if response.status_code == 200: | |
for line in response.iter_lines(): | |
if line: | |
try: | |
json_response = json.loads(line.decode('utf-8').split('data: ')[1]) | |
if 'response' in json_response: | |
chunk = json_response['response'] | |
full_response += chunk | |
yield full_response | |
except (json.JSONDecodeError, IndexError) as e: | |
logging.error(f"Error parsing streaming response: {str(e)}") | |
continue | |
else: | |
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}") | |
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later." | |
except Exception as e: | |
logging.error(f"Error in generating response from Cloudflare: {str(e)}") | |
yield f"I apologize, but an error occurred: {str(e)}. Please try again later." | |
if not full_response: | |
yield "I apologize, but I couldn't generate a response at this time. Please try again later." | |
def create_web_search_vectors(search_results): | |
embed = get_embeddings() | |
documents = [] | |
for result in search_results: | |
if 'body' in result: | |
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}" | |
documents.append(Document(page_content=content, metadata={"source": result['href']})) | |
return FAISS.from_documents(documents, embed) | |
def get_response_with_search(query, model, num_calls=3, temperature=0.1): | |
search_results = duckduckgo_search(query) | |
web_search_database = create_web_search_vectors(search_results) | |
if not web_search_database: | |
yield "No web search results available. Please try again.", "" | |
return | |
retriever = web_search_database.as_retriever(search_kwargs={"k": 10}) | |
relevant_docs = retriever.get_relevant_documents(query) | |
context = "\n".join([doc.page_content for doc in relevant_docs]) | |
prompt = f"""Using the following context from web search results: | |
{context} | |
You are an expert assistant tasked with creating a detailed and comprehensive research document in response to the following user query: '{query}' | |
Base your entire response strictly on the information retrieved from trusted sources. After completing the document, provide a list of all sources used. | |
Importantly, only include information that is directly supported by the retrieved content. | |
If any part of the information cannot be verified from the given sources, clearly state that it could not be confirmed.""" | |
initial_response = "" | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
# Use Cloudflare API | |
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"): | |
initial_response = response | |
else: | |
# Use Hugging Face API | |
client = InferenceClient(model, token=huggingface_token) | |
for i in range(num_calls): | |
for message in client.chat_completion( | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=10000, | |
temperature=temperature, | |
stream=True, | |
): | |
if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
chunk = message.choices[0].delta.content | |
initial_response += chunk | |
# Validation step | |
for revised_response in validate_response(initial_response, context, query, model, temperature): | |
yield revised_response, "" # Yield streaming revised response without sources | |
INSTRUCTION_PROMPTS = { | |
"Asset Managers": "Focus on the Management Discussion and Analysis and Financial Statements sections. Summarize key financial metrics, assets under management, and performance highlights for this asset management company.", | |
"Consumer Finance Companies": "Extract relevant data primarily from the Management Discussion and Analysis and Financial Statements. Provide a summary of the company's loan portfolio, interest income, credit quality, and key operational metrics.", | |
"Mortgage REITs": "Concentrate on the Financial Statements and Management Discussion and Analysis. Summarize the REIT's mortgage-backed securities portfolio, net interest income, book value per share, and dividend yield.", | |
# Add more instruction prompts as needed | |
} | |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2): | |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}") | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
logging.info("Loading FAISS database") | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
else: | |
logging.warning("No FAISS database found") | |
yield "No documents available. Please upload PDF documents to answer questions." | |
return | |
# Pre-filter the documents | |
filtered_docs = [] | |
for doc_id, doc in database.docstore._dict.items(): | |
if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs: | |
filtered_docs.append(doc) | |
logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}") | |
if not filtered_docs: | |
logging.warning(f"No documents found for the selected sources: {selected_docs}") | |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query." | |
return | |
# Create a new FAISS index with only the selected documents | |
filtered_db = FAISS.from_documents(filtered_docs, embed) | |
retriever = filtered_db.as_retriever(search_kwargs={"k": 10}) | |
logging.info(f"Retrieving relevant documents for query: {query}") | |
relevant_docs = retriever.get_relevant_documents(query) | |
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}") | |
for doc in relevant_docs: | |
logging.info(f"Document source: {doc.metadata['source']}") | |
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document | |
context_str = "\n".join([doc.page_content for doc in relevant_docs]) | |
logging.info(f"Total context length: {len(context_str)}") | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
logging.info("Using Cloudflare API") | |
# Use Cloudflare API with the retrieved context | |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"): | |
yield response | |
else: | |
logging.info("Using Hugging Face API") | |
# Use Hugging Face API | |
prompt = f"""Using the following context from the PDF documents: | |
{context_str} | |
Write a detailed and complete response that answers the following user question: '{query}'""" | |
client = InferenceClient(model, token=huggingface_token) | |
response = "" | |
for i in range(num_calls): | |
logging.info(f"API call {i+1}/{num_calls}") | |
for message in client.chat_completion( | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=10000, | |
temperature=temperature, | |
stream=True, | |
): | |
if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
chunk = message.choices[0].delta.content | |
response += chunk | |
yield response # Yield partial response | |
logging.info("Finished generating response") | |
def vote(data: gr.LikeData): | |
if data.liked: | |
print(f"You upvoted this response: {data.value}") | |
else: | |
print(f"You downvoted this response: {data.value}") | |
css = """ | |
/* Fine-tune chatbox size */ | |
.chatbot-container { | |
height: 600px !important; | |
width: 100% !important; | |
} | |
.chatbot-container > div { | |
height: 100%; | |
width: 100%; | |
} | |
""" | |
uploaded_documents = [] | |
def display_documents(): | |
return gr.CheckboxGroup( | |
choices=[doc["name"] for doc in uploaded_documents], | |
value=[doc["name"] for doc in uploaded_documents if doc["selected"]], | |
label="Select documents to query or delete" | |
) | |
def initial_conversation(): | |
return [ | |
(None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n" | |
"1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n" | |
"2. Use web search to find information\n" | |
"3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n" | |
"4. For any queries feel free to reach out @[email protected] or discord - shreyas094\n\n" | |
"To get started, upload some PDFs or ask me a question!") | |
] | |
# Add this new function | |
def refresh_documents(): | |
global uploaded_documents | |
uploaded_documents = load_documents() | |
return display_documents() | |
# Define the checkbox outside the demo block | |
document_selector = gr.CheckboxGroup(label="Select documents to query") | |
use_web_search = gr.Checkbox(label="Use Web Search", value=True) | |
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)" | |
instruction_choices = ["None"] + list(INSTRUCTION_PROMPTS.keys()) | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"), | |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"), | |
use_web_search, | |
document_selector, | |
gr.Dropdown(choices=instruction_choices, label="Select Entity Type for Summary", value="None") | |
], | |
title="AI-powered Web Search and PDF Chat Assistant", | |
description="Chat with your PDFs, use web search to answer questions, or generate summaries. Select an Entity Type for Summary to generate a specific summary.", | |
theme=gr.themes.Soft( | |
primary_hue="orange", | |
secondary_hue="amber", | |
neutral_hue="gray", | |
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"] | |
).set( | |
body_background_fill_dark="#0c0505", | |
block_background_fill_dark="#0c0505", | |
block_border_width="1px", | |
block_title_background_fill_dark="#1b0f0f", | |
input_background_fill_dark="#140b0b", | |
button_secondary_background_fill_dark="#140b0b", | |
border_color_accent_dark="#1b0f0f", | |
border_color_primary_dark="#1b0f0f", | |
background_fill_secondary_dark="#0c0505", | |
color_accent_soft_dark="transparent", | |
code_background_fill_dark="#140b0b" | |
), | |
css=css, | |
examples=[ | |
["Tell me about the contents of the uploaded PDFs."], | |
["What are the main topics discussed in the documents?"], | |
["Can you summarize the key points from the PDFs?"] | |
], | |
cache_examples=False, | |
analytics_enabled=False, | |
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7), | |
chatbot = gr.Chatbot( | |
show_copy_button=True, | |
likeable=True, | |
layout="bubble", | |
height=400, | |
value=initial_conversation() | |
) | |
) | |
# Add file upload functionality | |
with demo: | |
gr.Markdown("## Upload and Manage PDF Documents") | |
with gr.Row(): | |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) | |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse") | |
update_button = gr.Button("Upload Document") | |
refresh_button = gr.Button("Refresh Document List") | |
update_output = gr.Textbox(label="Update Status") | |
delete_button = gr.Button("Delete Selected Documents") | |
# Update both the output text and the document selector | |
update_button.click(update_vectors, | |
inputs=[file_input, parser_dropdown], | |
outputs=[update_output, document_selector]) | |
# Add the refresh button functionality | |
refresh_button.click(refresh_documents, | |
inputs=[], | |
outputs=[document_selector]) | |
# Add the delete button functionality | |
delete_button.click(delete_documents, | |
inputs=[document_selector], | |
outputs=[update_output, document_selector]) | |
gr.Markdown( | |
""" | |
## How to use | |
1. Upload PDF documents using the file input at the top. | |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store. | |
3. Select the documents you want to query using the checkboxes. | |
4. Ask questions in the chat interface. | |
5. Toggle "Use Web Search" to switch between PDF chat and web search. | |
6. Adjust Temperature and Number of API Calls to fine-tune the response generation. | |
7. Use the provided examples or ask your own questions. | |
""" | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |