Spaces:
Build error
Build error
| import os | |
| import json | |
| import re | |
| import gradio as gr | |
| import requests | |
| from duckduckgo_search import DDGS | |
| from typing import List | |
| from pydantic import BaseModel, Field | |
| from tempfile import NamedTemporaryFile | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from llama_parse import LlamaParse | |
| from langchain_core.documents import Document | |
| from huggingface_hub import InferenceClient | |
| import inspect | |
| # Environment variables and configurations | |
| huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
| llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY") | |
| MODELS = [ | |
| "mistralai/Mistral-7B-Instruct-v0.3", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| "microsoft/Phi-3-mini-4k-instruct" | |
| ] | |
| # Initialize LlamaParse | |
| llama_parser = LlamaParse( | |
| api_key=llama_cloud_api_key, | |
| result_type="markdown", | |
| num_workers=4, | |
| verbose=True, | |
| language="en", | |
| ) | |
| def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]: | |
| """Loads and splits the document into pages.""" | |
| if parser == "pypdf": | |
| loader = PyPDFLoader(file.name) | |
| return loader.load_and_split() | |
| elif parser == "llamaparse": | |
| try: | |
| documents = llama_parser.load_data(file.name) | |
| return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents] | |
| except Exception as e: | |
| print(f"Error using Llama Parse: {str(e)}") | |
| print("Falling back to PyPDF parser") | |
| loader = PyPDFLoader(file.name) | |
| return loader.load_and_split() | |
| else: | |
| raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.") | |
| def get_embeddings(): | |
| return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| def update_vectors(files, parser): | |
| if not files: | |
| return "Please upload at least one PDF file." | |
| embed = get_embeddings() | |
| total_chunks = 0 | |
| all_data = [] | |
| for file in files: | |
| data = load_document(file, parser) | |
| all_data.extend(data) | |
| total_chunks += len(data) | |
| if os.path.exists("faiss_database"): | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| database.add_documents(all_data) | |
| else: | |
| database = FAISS.from_documents(all_data, embed) | |
| database.save_local("faiss_database") | |
| return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}." | |
| def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False): | |
| print(f"Starting generate_chunked_response with {num_calls} calls") | |
| client = InferenceClient(model, token=huggingface_token) | |
| full_response = "" | |
| messages = [{"role": "user", "content": prompt}] | |
| for i in range(num_calls): | |
| print(f"Starting API call {i+1}") | |
| if should_stop: | |
| print("Stop clicked, breaking loop") | |
| break | |
| try: | |
| for message in client.chat_completion( | |
| messages=messages, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| stream=True, | |
| ): | |
| if should_stop: | |
| print("Stop clicked during streaming, breaking") | |
| break | |
| if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
| chunk = message.choices[0].delta.content | |
| full_response += chunk | |
| print(f"API call {i+1} completed") | |
| except Exception as e: | |
| print(f"Error in generating response: {str(e)}") | |
| # Clean up the response | |
| clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL) | |
| clean_response = clean_response.replace("Using the following context:", "").strip() | |
| clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip() | |
| # Remove duplicate paragraphs and sentences | |
| paragraphs = clean_response.split('\n\n') | |
| unique_paragraphs = [] | |
| for paragraph in paragraphs: | |
| if paragraph not in unique_paragraphs: | |
| sentences = paragraph.split('. ') | |
| unique_sentences = [] | |
| for sentence in sentences: | |
| if sentence not in unique_sentences: | |
| unique_sentences.append(sentence) | |
| unique_paragraphs.append('. '.join(unique_sentences)) | |
| final_response = '\n\n'.join(unique_paragraphs) | |
| print(f"Final clean response: {final_response[:100]}...") | |
| return final_response | |
| def duckduckgo_search(query): | |
| with DDGS() as ddgs: | |
| results = ddgs.text(query, max_results=5) | |
| return results | |
| class CitingSources(BaseModel): | |
| sources: List[str] = Field( | |
| ..., | |
| description="List of sources to cite. Should be an URL of the source." | |
| ) | |
| def chatbot_interface(message, history, use_web_search, model, temperature, num_calls): | |
| if not message.strip(): | |
| return "", history | |
| history = history + [(message, "")] | |
| try: | |
| if use_web_search: | |
| for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature): | |
| history[-1] = (message, f"{main_content}\n\n{sources}") | |
| yield history | |
| else: | |
| for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature): | |
| history[-1] = (message, partial_response) | |
| yield history | |
| except gr.CancelledError: | |
| yield history | |
| def retry_last_response(history, use_web_search, model, temperature, num_calls): | |
| if not history: | |
| return history | |
| last_user_msg = history[-1][0] | |
| history = history[:-1] # Remove the last response | |
| return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls) | |
| def respond(message, history, model, temperature, num_calls, use_web_search): | |
| if use_web_search: | |
| for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature): | |
| yield f"{main_content}\n\n{sources}" | |
| else: | |
| for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature): | |
| yield partial_response | |
| def get_response_with_search(query, model, num_calls=3, temperature=0.2): | |
| search_results = duckduckgo_search(query) | |
| context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" | |
| for result in search_results if 'body' in result) | |
| prompt = f"""Using the following context: | |
| {context} | |
| Write a detailed and complete research document that fulfills the following user request: '{query}' | |
| After writing the document, please provide a list of sources used in your response.""" | |
| client = InferenceClient(model, token=huggingface_token) | |
| main_content = "" | |
| for i in range(num_calls): | |
| for message in client.chat_completion( | |
| messages=[{"role": "user", "content": prompt}], | |
| max_tokens=1000, | |
| temperature=temperature, | |
| stream=True, | |
| ): | |
| if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
| chunk = message.choices[0].delta.content | |
| main_content += chunk | |
| yield main_content, "" # Yield partial main content without sources | |
| def get_response_from_pdf(query, model, num_calls=3, temperature=0.2): | |
| embed = get_embeddings() | |
| if os.path.exists("faiss_database"): | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| else: | |
| yield "No documents available. Please upload PDF documents to answer questions." | |
| return | |
| retriever = database.as_retriever() | |
| relevant_docs = retriever.get_relevant_documents(query) | |
| context_str = "\n".join([doc.page_content for doc in relevant_docs]) | |
| prompt = f"""Using the following context from the PDF documents: | |
| {context_str} | |
| Write a detailed and complete response that answers the following user question: '{query}'""" | |
| client = InferenceClient(model, token=huggingface_token) | |
| response = "" | |
| for i in range(num_calls): | |
| for message in client.chat_completion( | |
| messages=[{"role": "user", "content": prompt}], | |
| max_tokens=1000, | |
| temperature=temperature, | |
| stream=True, | |
| ): | |
| if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
| chunk = message.choices[0].delta.content | |
| response += chunk | |
| yield response # Yield partial response | |
| def vote(data: gr.LikeData): | |
| if data.liked: | |
| print(f"You upvoted this response: {data.value}") | |
| else: | |
| print(f"You downvoted this response: {data.value}") | |
| css = """ | |
| /* Add your custom CSS here */ | |
| """ | |
| # Define the checkbox outside the demo block | |
| use_web_search = gr.Checkbox(label="Use Web Search", value=False) | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"), | |
| use_web_search # Add this line to include the checkbox | |
| ], | |
| title="AI-powered Web Search and PDF Chat Assistant", | |
| description="Chat with your PDFs or use web search to answer questions.", | |
| theme=gr.themes.Soft( | |
| primary_hue="orange", | |
| secondary_hue="amber", | |
| neutral_hue="gray", | |
| font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"] | |
| ).set( | |
| body_background_fill_dark="#0c0505", | |
| block_background_fill_dark="#0c0505", | |
| block_border_width="1px", | |
| block_title_background_fill_dark="#1b0f0f", | |
| input_background_fill_dark="#140b0b", | |
| button_secondary_background_fill_dark="#140b0b", | |
| border_color_accent_dark="#1b0f0f", | |
| border_color_primary_dark="#1b0f0f", | |
| background_fill_secondary_dark="#0c0505", | |
| color_accent_soft_dark="transparent", | |
| code_background_fill_dark="#140b0b" | |
| ), | |
| css=css, | |
| examples=[ | |
| ["Tell me about the contents of the uploaded PDFs."], | |
| ["What are the main topics discussed in the documents?"], | |
| ["Can you summarize the key points from the PDFs?"] | |
| ], | |
| cache_examples=False, | |
| analytics_enabled=False, | |
| ) | |
| # Add file upload functionality | |
| with demo: | |
| gr.Markdown("## Upload PDF Documents") | |
| with gr.Row(): | |
| file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) | |
| parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse") | |
| update_button = gr.Button("Upload Document") | |
| update_output = gr.Textbox(label="Update Status") | |
| update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output) | |
| gr.Markdown( | |
| """ | |
| ## How to use | |
| 1. Upload PDF documents using the file input at the top. | |
| 2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store. | |
| 3. Ask questions in the chat interface. | |
| 4. Toggle "Use Web Search" to switch between PDF chat and web search, the toggle box is present inside additional inputs dropdown. | |
| 5. Adjust Temperature and Number of API Calls to fine-tune the response generation. | |
| 6. Use the provided examples or ask your own questions. | |
| """ | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |